less prototype, less bad code implementation of CCHM type theory
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

639 lines
23 KiB

  1. {-# LANGUAGE BlockArguments #-}
  2. {-# LANGUAGE LambdaCase #-}
  3. {-# LANGUAGE DeriveAnyClass #-}
  4. {-# LANGUAGE ScopedTypeVariables #-}
  5. {-# LANGUAGE ViewPatterns #-}
  6. {-# LANGUAGE TupleSections #-}
  7. module Elab.Eval where
  8. import Control.Monad.Reader
  9. import Control.Exception
  10. import qualified Data.Map.Strict as Map
  11. import qualified Data.Sequence as Seq
  12. import qualified Data.Set as Set
  13. import qualified Data.Text as T
  14. import Data.Map.Strict (Map)
  15. import Data.Sequence (Seq)
  16. import Data.List (sortOn)
  17. import Data.Traversable
  18. import Data.Set (Set)
  19. import Data.Typeable
  20. import Data.Foldable
  21. import Data.IORef
  22. import Data.Maybe
  23. import Elab.Eval.Formula
  24. import Elab.Monad
  25. import GHC.Stack
  26. import Presyntax.Presyntax (Plicity(..))
  27. import Prettyprinter
  28. import Syntax.Pretty
  29. import Syntax
  30. import System.IO.Unsafe
  31. import {-# SOURCE #-} Elab.WiredIn
  32. eval :: HasCallStack => Term -> ElabM Value
  33. eval t = asks (flip eval' t)
  34. -- everywhere force
  35. zonkIO :: Value -> IO Value
  36. zonkIO (VNe hd sp) = do
  37. sp' <- traverse zonkSp sp
  38. case hd of
  39. HMeta (mvCell -> cell) -> do
  40. solved <- liftIO $ readIORef cell
  41. case solved of
  42. Just vl -> zonkIO $ foldl applProj vl sp'
  43. Nothing -> pure $ VNe hd sp'
  44. hd -> pure $ VNe hd sp'
  45. zonkIO (GluedVl h sp vl) = GluedVl h <$> traverse zonkSp sp <*> zonkIO vl
  46. zonkIO (VLam p (Closure s k)) = pure $ VLam p (Closure s (zonk . k))
  47. zonkIO (VPi p d (Closure s k)) = VPi p <$> zonkIO d <*> pure (Closure s (zonk . k))
  48. zonkIO (VSigma d (Closure s k)) = VSigma <$> zonkIO d <*> pure (Closure s (zonk . k))
  49. zonkIO (VPair a b) = VPair <$> zonkIO a <*> zonkIO b
  50. zonkIO (VPath line x y) = VPath <$> zonkIO line <*> zonkIO x <*> zonkIO y
  51. zonkIO (VLine line x y f) = VLine <$> zonkIO line <*> zonkIO x <*> zonkIO y <*> zonkIO f
  52. -- Sorts
  53. zonkIO VType = pure VType
  54. zonkIO VTypeω = pure VTypeω
  55. zonkIO VI = pure VI
  56. zonkIO VI0 = pure VI0
  57. zonkIO VI1 = pure VI1
  58. zonkIO (VIAnd x y) = iand <$> zonkIO x <*> zonkIO y
  59. zonkIO (VIOr x y) = ior <$> zonkIO x <*> zonkIO y
  60. zonkIO (VINot x) = inot <$> zonkIO x
  61. zonkIO (VIsOne x) = VIsOne <$> zonkIO x
  62. zonkIO VItIsOne = pure VItIsOne
  63. zonkIO (VPartial x y) = VPartial <$> zonkIO x <*> zonkIO y
  64. zonkIO (VPartialP x y) = VPartialP <$> zonkIO x <*> zonkIO y
  65. zonkIO (VSystem fs) = do
  66. t <- for (Map.toList fs) $ \(a, b) -> (,) <$> zonkIO a <*> zonkIO b
  67. pure (mkVSystem (Map.fromList t))
  68. zonkIO (VSub a b c) = VSub <$> zonkIO a <*> zonkIO b <*> zonkIO c
  69. zonkIO (VInc a b c) = VInc <$> zonkIO a <*> zonkIO b <*> zonkIO c
  70. zonkIO (VComp a b c d) = comp <$> zonkIO a <*> zonkIO b <*> zonkIO c <*> zonkIO d
  71. zonkIO (VHComp a b c d) = hComp <$> zonkIO a <*> zonkIO b <*> zonkIO c <*> zonkIO d
  72. zonkIO (VGlueTy a phi ty e) = glueType <$> zonkIO a <*> zonkIO phi <*> zonkIO ty <*> zonkIO e
  73. zonkIO (VGlue a phi ty e t x) = glueElem <$> zonkIO a <*> zonkIO phi <*> zonkIO ty <*> zonkIO e <*> zonkIO t <*> zonkIO x
  74. zonkIO (VUnglue a phi ty e x) = unglue <$> zonkIO a <*> zonkIO phi <*> zonkIO ty <*> zonkIO e <*> zonkIO x
  75. zonkIO (VCase env t x xs) = do
  76. env' <- emptyEnv
  77. evalCase env'{getEnv = env} . (@@) <$> zonkIO t <*> zonkIO x <*> pure xs
  78. zonkSp :: Projection -> IO Projection
  79. zonkSp (PApp p x) = PApp p <$> zonkIO x
  80. zonkSp (PIElim l x y i) = PIElim <$> zonkIO l <*> zonkIO x <*> zonkIO y <*> zonkIO i
  81. zonkSp (POuc a phi u) = POuc <$> zonkIO a <*> zonkIO phi <*> zonkIO u
  82. zonkSp PProj1 = pure PProj1
  83. zonkSp PProj2 = pure PProj2
  84. zonk :: Value -> Value
  85. zonk = unsafePerformIO . zonkIO
  86. eval' :: HasCallStack => ElabEnv -> Term -> Value
  87. eval' env (Ref x) =
  88. case Map.lookup x (getEnv env) of
  89. Just (_, vl) -> vl
  90. _ -> VNe (HVar x) mempty
  91. eval' env (Con x) =
  92. case Map.lookup x (getEnv env) of
  93. Just (ty, _) -> VNe (HCon ty x) mempty
  94. Nothing -> error $ "constructor " ++ show x ++ " has no type in scope"
  95. eval' env (PCon sys x) =
  96. case Map.lookup x (getEnv env) of
  97. Just (ty, _) -> VNe (HPCon (eval' env sys) ty x) mempty
  98. Nothing -> error $ "constructor " ++ show x ++ " has no type in scope"
  99. eval' _ (Data n x) = VNe (HData n x) mempty
  100. eval' env (App p f x) = vApp p (eval' env f) (eval' env x)
  101. eval' env (Lam p s t) =
  102. VLam p $ Closure s $ \a ->
  103. eval' env { getEnv = Map.insert s (error "type of abs", a) (getEnv env) } t
  104. eval' env (Pi p s d t) =
  105. VPi p (eval' env d) $ Closure s $ \a ->
  106. eval' env { getEnv = (Map.insert s (error "type of abs", a) (getEnv env))} t
  107. eval' _ (Meta m) = VNe (HMeta m) mempty
  108. eval' env (Sigma s d t) =
  109. VSigma (eval' env d) $ Closure s $ \a ->
  110. eval' env { getEnv = Map.insert s (error "type of abs", a) (getEnv env) } t
  111. eval' e (Pair a b) = VPair (eval' e a) (eval' e b)
  112. eval' e (Proj1 a) = vProj1 (eval' e a)
  113. eval' e (Proj2 a) = vProj2 (eval' e a)
  114. eval' _ Type = VType
  115. eval' _ Typeω = VTypeω
  116. eval' _ I = VI
  117. eval' _ I0 = VI0
  118. eval' _ I1 = VI1
  119. eval' e (IAnd x y) = iand (eval' e x) (eval' e y)
  120. eval' e (IOr x y) = ior (eval' e x) (eval' e y)
  121. eval' e (INot x) = inot (eval' e x)
  122. eval' e (PathP l a b) = VPath (eval' e l) (eval' e a) (eval' e b)
  123. eval' e (IElim l x y f i) = ielim (eval' e l) (eval' e x) (eval' e y) (eval' e f) (eval' e i)
  124. eval' e (PathIntro p x y f) = VLine (eval' e p) (eval' e x) (eval' e y) (eval' e f)
  125. eval' e (IsOne i) = VIsOne (eval' e i)
  126. eval' _ ItIsOne = VItIsOne
  127. eval' e (Partial x y) = VPartial (eval' e x) (eval' e y)
  128. eval' e (PartialP x y) = VPartialP (eval' e x) (eval' e y)
  129. eval' e (System fs) = VSystem (Map.fromList $ map (\(x, y) -> (eval' e x, eval' e y)) $ Map.toList $ fs)
  130. eval' e (Sub a phi u) = VSub (eval' e a) (eval' e phi) (eval' e u)
  131. eval' e (Inc a phi u) = VInc (eval' e a) (eval' e phi) (eval' e u)
  132. eval' e (Ouc a phi u x) = outS (eval' e a) (eval' e phi) (eval' e u) (eval' e x)
  133. eval' e (Comp a phi u a0) = comp (eval' e a) (eval' e phi) (eval' e u) (eval' e a0)
  134. eval' e (HComp a phi u a0) = hComp (eval' e a) (eval' e phi) (eval' e u) (eval' e a0)
  135. eval' e (GlueTy a phi tys f) = glueType (eval' e a) (eval' e phi) (eval' e tys) (eval' e f)
  136. eval' e (Glue a phi tys eqvs t x) = glueElem (eval' e a) (eval' e phi) (eval' e tys) (eval' e eqvs) (eval' e t) (eval' e x)
  137. eval' e (Unglue a phi tys f x) = unglue (eval' e a) (eval' e phi) (eval' e tys) (eval' e f) (eval' e x)
  138. eval' e (Let ns x) =
  139. let env' = foldl (\newe (n, ty, x) ->
  140. let nft = eval' newe ty
  141. in newe { getEnv = Map.insert n (nft, evalFix' newe n nft x) (getEnv newe) })
  142. e
  143. ns
  144. in eval' env' x
  145. eval' e (Case range sc xs) = evalCase e (eval' e range @@) (force (eval' e sc)) xs
  146. evalCase :: ElabEnv -> (Value -> Value) -> Value -> [(Term, Int, Term)] -> Value
  147. evalCase _ _ sc [] = error $ "unmatched pattern for value: " ++ show (prettyTm (quote sc))
  148. evalCase env rng (VSystem fs) cases = VSystem (fmap (flip (evalCase env rng) cases) fs)
  149. evalCase env rng (VHComp a phi u a0) cases =
  150. comp (fun \i -> rng (v i)) phi (system \i is1 -> evalCase env rng (u @@ i @@ is1) cases)
  151. (VInc (rng a) phi (evalCase env rng (outS a0 phi (u @@ VI0) a0) cases))
  152. where
  153. v = Elab.WiredIn.fill (fun (const a)) phi u a0
  154. evalCase env _ sc ((Ref _, _, k):_) = eval' env k @@ sc
  155. evalCase env rng (val@(VNe (HCon _ x) sp)) ((Con x', _, k):xs)
  156. | x == x' = foldl applProj (eval' env k) sp
  157. | otherwise = evalCase env rng val xs
  158. evalCase env rng (val@(VNe (HPCon _ _ x) sp)) ((Con x', _, k):xs)
  159. | x == x' = foldl applProj (eval' env k) sp
  160. | otherwise = evalCase env rng val xs
  161. evalCase env rng sc xs = VCase (getEnv env) (fun rng) sc xs
  162. evalFix' :: ElabEnv -> Name -> NFType -> Term -> Value
  163. evalFix' env name nft term = fix $ \val -> eval' env{ getEnv = Map.insert name (nft, val) (getEnv env) } term
  164. evalFix :: Name -> NFType -> Term -> ElabM Value
  165. evalFix name nft term = do
  166. t <- ask
  167. pure (evalFix' t name nft term)
  168. data NotEqual = NotEqual Value Value
  169. deriving (Show, Typeable, Exception)
  170. unify' :: HasCallStack => Value -> Value -> ElabM ()
  171. unify' topa topb = join $ go <$> forceIO topa <*> forceIO topb where
  172. go (VNe (HMeta mv) sp) rhs = solveMeta mv sp rhs
  173. go rhs (VNe (HMeta mv) sp) = solveMeta mv sp rhs
  174. go (VNe (HPCon s _ _) _) rhs
  175. | VSystem _ <- s = go (force s) rhs
  176. go lhs (VNe (HPCon s _ _) _)
  177. | VSystem _ <- s = go lhs (force s)
  178. go (VNe x a) (VNe x' a')
  179. | x == x', length a == length a' =
  180. traverse_ (uncurry unify'Spine) (Seq.zip a a')
  181. go (VLam p (Closure n k)) vl = do
  182. t <- VVar <$> newName' n
  183. unify' (k t) (vApp p vl t)
  184. go vl (VLam p (Closure n k)) = do
  185. t <- VVar <$> newName' n
  186. unify' (vApp p vl t) (k t)
  187. go (VPair a b) vl = unify' a (vProj1 vl) *> unify' b (vProj2 vl)
  188. go vl (VPair a b) = unify' (vProj1 vl) a *> unify' (vProj2 vl) b
  189. go (VPi p d (Closure _ k)) (VPi p' d' (Closure _ k')) | p == p' = do
  190. t <- VVar <$> newName
  191. unify' d d'
  192. unify' (k t) (k' t)
  193. go (VSigma d (Closure _ k)) (VSigma d' (Closure _ k')) = do
  194. t <- VVar <$> newName
  195. unify' d d'
  196. unify' (k t) (k' t)
  197. go VType VType = pure ()
  198. go VTypeω VTypeω = pure ()
  199. go VI VI = pure ()
  200. go (VPath l x y) (VPath l' x' y') = do
  201. unify' l l'
  202. unify' x x'
  203. unify' y y'
  204. go (VLine l x y p) p' = do
  205. n <- VVar <$> newName
  206. unify' (p @@ n) (ielim l x y p' n)
  207. go p' (VLine l x y p) = do
  208. n <- VVar <$> newName
  209. unify' (ielim l x y p' n) (p @@ n)
  210. go (VIsOne x) (VIsOne y) = unify' x y
  211. -- IsOne is proof-irrelevant:
  212. go VItIsOne _ = pure ()
  213. go _ VItIsOne = pure ()
  214. go (VPartial phi r) (VPartial phi' r') = unify' phi phi' *> unify' r r'
  215. go (VPartialP phi r) (VPartialP phi' r') = unify' phi phi' *> unify' r r'
  216. go (VSub a phi u) (VSub a' phi' u') = traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u')]
  217. go (VInc a phi u) (VInc a' phi' u') = traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u')]
  218. go (VComp a phi u a0) (VComp a' phi' u' a0') =
  219. traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u'), (a0, a0')]
  220. go (VGlueTy _ (force -> VI1) u _0) rhs = unify' (u @@ VItIsOne) rhs
  221. go lhs (VGlueTy _ (force -> VI1) u _0) = unify' lhs (u @@ VItIsOne)
  222. go (VGlueTy a phi u a0) (VGlueTy a' phi' u' a0') =
  223. traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u'), (a0, a0')]
  224. go (VGlue a phi u a0 t x) (VGlue a' phi' u' a0' t' x') =
  225. traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u'), (a0, a0'), (t, t'), (x, x')]
  226. go (VSystem sys) rhs = goSystem unify' sys rhs
  227. go rhs (VSystem sys) = goSystem (flip unify') sys rhs
  228. go (VCase _ _ a b) (VCase _ _ a' b') = do
  229. unify' a a'
  230. let go (_, _, a) (_, _, b) = join $ unify' <$> eval a <*> eval b
  231. zipWithM_ go (sortOn (\(x, _, _) -> x) b) (sortOn (\(x, _, _) -> x) b')
  232. go x y
  233. | x == y = pure ()
  234. | otherwise =
  235. case (toDnf x, toDnf y) of
  236. (Just xs, Just ys) -> unify'Formula xs ys
  237. _ -> fail
  238. goSystem :: (Value -> Value -> ElabM ()) -> Map.Map Value Value -> Value -> ElabM ()
  239. goSystem k sys rhs = do
  240. let rhs_q = quote rhs
  241. env <- ask
  242. for_ (Map.toList sys) $ \(f, i) -> do
  243. let i_q = quote i
  244. for (truthAssignments f (getEnv env)) $ \e ->
  245. k (eval' env{getEnv = e} i_q) (eval' env{getEnv = e} rhs_q)
  246. fail = throwElab $ NotEqual topa topb
  247. unify'Spine (PApp a v) (PApp a' v')
  248. | a == a' = unify' v v'
  249. unify'Spine PProj1 PProj1 = pure ()
  250. unify'Spine PProj2 PProj2 = pure ()
  251. unify'Spine (PIElim _ _ _ i) (PIElim _ _ _ j) = unify' i j
  252. unify'Spine (POuc a phi u) (POuc a' phi' u') =
  253. traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u')]
  254. unify'Spine _ _ = fail
  255. unify'Formula x y
  256. | compareDNFs x y = pure ()
  257. | otherwise = fail
  258. unify :: HasCallStack => Value -> Value -> ElabM ()
  259. unify a b = unify' a b `catchElab` \(_ :: SomeException) -> liftIO $ throwIO (NotEqual a b)
  260. isConvertibleTo :: Value -> Value -> ElabM (Term -> Term)
  261. isConvertibleTo a b = isConvertibleTo (force a) (force b) where
  262. VPi Im d (Closure _v k) `isConvertibleTo` ty = do
  263. meta <- newMeta d
  264. cont <- k meta `isConvertibleTo` ty
  265. pure (\f -> cont (App Im f (quote meta)))
  266. VType `isConvertibleTo` VTypeω = pure id
  267. VPi p d (Closure _ k) `isConvertibleTo` VPi p' d' (Closure _ k') | p == p' = do
  268. wp <- d' `isConvertibleTo` d
  269. n <- newName
  270. wp_n <- eval (Lam Ex n (wp (Ref n)))
  271. wp' <- k (VVar n) `isConvertibleTo` k' (wp_n @@ VVar n)
  272. pure (\f -> Lam p n (wp' (App p f (wp (Ref n)))))
  273. isConvertibleTo a b = do
  274. unify' a b
  275. pure id
  276. newMeta :: Value -> ElabM Value
  277. newMeta dom = do
  278. loc <- liftM2 (,) <$> asks currentFile <*> asks currentSpan
  279. n <- newName
  280. c <- liftIO $ newIORef Nothing
  281. let m = MV (getNameText n) c dom (flatten <$> loc)
  282. flatten (x, (y, z)) = (x, y, z)
  283. env <- asks getEnv
  284. t <- for (Map.toList env) $ \(n, _) -> pure $
  285. case n of
  286. Bound{} -> Just (PApp Ex (VVar n))
  287. _ -> Nothing
  288. pure (VNe (HMeta m) (Seq.fromList (catMaybes t)))
  289. newName :: MonadIO m => m Name
  290. newName = liftIO $ do
  291. x <- atomicModifyIORef _nameCounter $ \x -> (x + 1, x + 1)
  292. pure (Bound (T.pack (show x)) x)
  293. newName' :: Name -> ElabM Name
  294. newName' n = do
  295. ~(Bound _ x) <- newName
  296. pure (Bound (getNameText n) x)
  297. _nameCounter :: IORef Int
  298. _nameCounter = unsafePerformIO $ newIORef 0
  299. {-# NOINLINE _nameCounter #-}
  300. solveMeta :: MV -> Seq Projection -> Value -> ElabM ()
  301. solveMeta m@(mvCell -> cell) sp rhs = do
  302. env <- ask
  303. names <- tryElab $ checkSpine Set.empty sp
  304. case names of
  305. Right names -> do
  306. checkScope (Set.fromList names) rhs
  307. `withNote` hsep [prettyTm (quote (VNe (HMeta m) sp)), pretty '≡', prettyTm (quote rhs)]
  308. let tm = quote rhs
  309. lam = eval' env $ foldr (Lam Ex) tm names
  310. liftIO . atomicModifyIORef' cell $ \case
  311. Just _ -> error "filled cell in solvedMeta"
  312. Nothing -> (Just lam, ())
  313. Left (_ :: SpineProjection) -> do
  314. liftIO . atomicModifyIORef' (unsolvedMetas env) $ \x -> (, ()) $
  315. case Map.lookup m x of
  316. Just qs -> Map.insert m ((sp, rhs):qs) x
  317. Nothing -> Map.insert m [(sp, rhs)] x
  318. checkScope :: Set Name -> Value -> ElabM ()
  319. checkScope scope (VNe h sp) =
  320. do
  321. case h of
  322. HVar v@Bound{} ->
  323. unless (v `Set.member` scope) . throwElab $
  324. NotInScope v
  325. HVar{} -> pure ()
  326. HCon{} -> pure ()
  327. HPCon{} -> pure ()
  328. HMeta{} -> pure ()
  329. HData{} -> pure ()
  330. traverse_ checkProj sp
  331. where
  332. checkProj (PApp _ t) = checkScope scope t
  333. checkProj (PIElim l x y i) = traverse_ (checkScope scope) [l, x, y, i]
  334. checkProj (POuc a phi u) = traverse_ (checkScope scope) [a, phi, u]
  335. checkProj PProj1 = pure ()
  336. checkProj PProj2 = pure ()
  337. checkScope scope (GluedVl _ _p vl) = checkScope scope vl
  338. checkScope scope (VLam _ (Closure n k)) =
  339. checkScope (Set.insert n scope) (k (VVar n))
  340. checkScope scope (VPi _ d (Closure n k)) = do
  341. checkScope scope d
  342. checkScope (Set.insert n scope) (k (VVar n))
  343. checkScope scope (VSigma d (Closure n k)) = do
  344. checkScope scope d
  345. checkScope (Set.insert n scope) (k (VVar n))
  346. checkScope s (VPair a b) = traverse_ (checkScope s) [a, b]
  347. checkScope _ VType = pure ()
  348. checkScope _ VTypeω = pure ()
  349. checkScope _ VI = pure ()
  350. checkScope _ VI0 = pure ()
  351. checkScope _ VI1 = pure ()
  352. checkScope s (VIAnd x y) = traverse_ (checkScope s) [x, y]
  353. checkScope s (VIOr x y) = traverse_ (checkScope s) [x, y]
  354. checkScope s (VINot x) = checkScope s x
  355. checkScope s (VPath line a b) = traverse_ (checkScope s) [line, a, b]
  356. checkScope s (VLine _ _ _ line) = checkScope s line
  357. checkScope s (VIsOne x) = checkScope s x
  358. checkScope _ VItIsOne = pure ()
  359. checkScope s (VPartial x y) = traverse_ (checkScope s) [x, y]
  360. checkScope s (VPartialP x y) = traverse_ (checkScope s) [x, y]
  361. checkScope s (VSystem fs) =
  362. for_ (Map.toList fs) $ \(x, y) -> traverse_ (checkScope s) [x, y]
  363. checkScope s (VSub a b c) = traverse_ (checkScope s) [a, b, c]
  364. checkScope s (VInc a b c) = traverse_ (checkScope s) [a, b, c]
  365. checkScope s (VComp a phi u a0) = traverse_ (checkScope s) [a, phi, u, a0]
  366. checkScope s (VHComp a phi u a0) = traverse_ (checkScope s) [a, phi, u, a0]
  367. checkScope s (VGlueTy a phi ty eq) = traverse_ (checkScope s) [a, phi, ty, eq]
  368. checkScope s (VGlue a phi ty eq inv x) = traverse_ (checkScope s) [a, phi, ty, eq, inv, x]
  369. checkScope s (VUnglue a phi ty eq vl) = traverse_ (checkScope s) [a, phi, ty, eq, vl]
  370. checkScope s (VCase _ _ v _) = checkScope s v
  371. checkSpine :: Set Name -> Seq Projection -> ElabM [Name]
  372. checkSpine scope (PApp Ex (VVar n@Bound{}) Seq.:<| xs)
  373. | n `Set.member` scope = throwElab $ NonLinearSpine n
  374. | otherwise = (n:) <$> checkSpine scope xs
  375. checkSpine _ (p Seq.:<| _) = throwElab $ SpineProj p
  376. checkSpine _ Seq.Empty = pure []
  377. newtype NonLinearSpine = NonLinearSpine { getDupeName :: Name }
  378. deriving (Show, Typeable, Exception)
  379. newtype SpineProjection = SpineProj { getSpineProjection :: Projection }
  380. deriving (Show, Typeable, Exception)
  381. substituteIO :: Map.Map Name Value -> Value -> IO Value
  382. substituteIO sub = substituteIO . force where
  383. substituteIO (VNe hd sp) = do
  384. sp' <- traverse (substituteSp sub) sp
  385. case hd of
  386. HMeta (mvCell -> cell) -> do
  387. solved <- liftIO $ readIORef cell
  388. case solved of
  389. Just vl -> substituteIO $ foldl applProj vl sp'
  390. Nothing -> pure $ VNe hd sp'
  391. HVar v ->
  392. case Map.lookup v sub of
  393. Just vl -> substituteIO $ foldl applProj vl sp'
  394. Nothing -> pure $ VNe hd sp'
  395. hd -> pure $ VNe hd sp'
  396. substituteIO (GluedVl h sp vl) = GluedVl h <$> traverse (substituteSp sub) sp <*> substituteIO vl
  397. substituteIO (VLam p (Closure s k)) = pure $ VLam p (Closure s (substitute (Map.delete s sub) . k))
  398. substituteIO (VPi p d (Closure s k)) = VPi p <$> substituteIO d <*> pure (Closure s (substitute (Map.delete s sub) . k))
  399. substituteIO (VSigma d (Closure s k)) = VSigma <$> substituteIO d <*> pure (Closure s (substitute (Map.delete s sub) . k))
  400. substituteIO (VPair a b) = VPair <$> substituteIO a <*> substituteIO b
  401. substituteIO (VPath line x y) = VPath <$> substituteIO line <*> substituteIO x <*> substituteIO y
  402. substituteIO (VLine line x y f) = VLine <$> substituteIO line <*> substituteIO x <*> substituteIO y <*> substituteIO f
  403. -- Sorts
  404. substituteIO VType = pure VType
  405. substituteIO VTypeω = pure VTypeω
  406. substituteIO VI = pure VI
  407. substituteIO VI0 = pure VI0
  408. substituteIO VI1 = pure VI1
  409. substituteIO (VIAnd x y) = iand <$> substituteIO x <*> substituteIO y
  410. substituteIO (VIOr x y) = ior <$> substituteIO x <*> substituteIO y
  411. substituteIO (VINot x) = inot <$> substituteIO x
  412. substituteIO (VIsOne x) = VIsOne <$> substituteIO x
  413. substituteIO VItIsOne = pure VItIsOne
  414. substituteIO (VPartial x y) = VPartial <$> substituteIO x <*> substituteIO y
  415. substituteIO (VPartialP x y) = VPartialP <$> substituteIO x <*> substituteIO y
  416. substituteIO (VSystem fs) = do
  417. t <- for (Map.toList fs) $ \(a, b) -> (,) <$> substituteIO a <*> substituteIO b
  418. pure (mkVSystem (Map.fromList t))
  419. substituteIO (VSub a b c) = VSub <$> substituteIO a <*> substituteIO b <*> substituteIO c
  420. substituteIO (VInc a b c) = VInc <$> substituteIO a <*> substituteIO b <*> substituteIO c
  421. substituteIO (VComp a b c d) = comp <$> substituteIO a <*> substituteIO b <*> substituteIO c <*> substituteIO d
  422. substituteIO (VHComp a b c d) = hComp <$> substituteIO a <*> substituteIO b <*> substituteIO c <*> substituteIO d
  423. substituteIO (VGlueTy a phi ty e) = glueType <$> substituteIO a <*> substituteIO phi <*> substituteIO ty <*> substituteIO e
  424. substituteIO (VGlue a phi ty e t x) = glueElem <$> substituteIO a <*> substituteIO phi <*> substituteIO ty <*> substituteIO e <*> substituteIO t <*> substituteIO x
  425. substituteIO (VUnglue a phi ty e x) = unglue <$> substituteIO a <*> substituteIO phi <*> substituteIO ty <*> substituteIO e <*> substituteIO x
  426. substituteIO (VCase env t x xs) = VCase env <$> substituteIO t <*> substituteIO x <*> pure xs
  427. substitute :: Map Name Value -> Value -> Value
  428. substitute sub = unsafePerformIO . substituteIO sub
  429. substituteSp :: Map Name Value -> Projection -> IO Projection
  430. substituteSp sub (PApp p x) = PApp p <$> substituteIO sub x
  431. substituteSp sub (PIElim l x y i) = PIElim <$> substituteIO sub l <*> substituteIO sub x <*> substituteIO sub y <*> substituteIO sub i
  432. substituteSp sub (POuc a phi u) = POuc <$> substituteIO sub a <*> substituteIO sub phi <*> substituteIO sub u
  433. substituteSp _ PProj1 = pure PProj1
  434. substituteSp _ PProj2 = pure PProj2
  435. mkVSystem :: Map.Map Value Value -> Value
  436. mkVSystem vals =
  437. let map' = Map.fromList (map (\(a, b) -> (force a, b)) (Map.toList vals)) in
  438. case Map.lookup VI1 map' of
  439. Just x -> x
  440. Nothing -> VSystem (Map.filterWithKey (\k _ -> k /= VI0) map')
  441. forceIO :: MonadIO m => Value -> m Value
  442. forceIO mv@(VNe (HMeta (mvCell -> cell)) args) = do
  443. solved <- liftIO $ readIORef cell
  444. case solved of
  445. Just vl -> forceIO (foldl applProj vl args)
  446. Nothing -> pure mv
  447. forceIO vl@(VSystem fs) =
  448. case Map.lookup VI1 fs of
  449. Just x -> forceIO x
  450. Nothing -> pure vl
  451. forceIO (GluedVl _ _ vl) = forceIO vl
  452. forceIO (VComp line phi u a0) = comp <$> forceIO line <*> forceIO phi <*> pure u <*> pure a0
  453. forceIO (VCase env rng v vs) = do
  454. env' <- liftIO emptyEnv
  455. r <- forceIO rng
  456. evalCase env'{getEnv=env} (r @@) <$> forceIO v <*> pure vs
  457. forceIO x = pure x
  458. force :: Value -> Value
  459. force = unsafePerformIO . forceIO
  460. applProj :: HasCallStack => Value -> Projection -> Value
  461. applProj fun (PApp p arg) = vApp p fun arg
  462. applProj fun (PIElim l x y i) = ielim l x y fun i
  463. applProj fun (POuc a phi u) = outS a phi u fun
  464. applProj fun PProj1 = vProj1 fun
  465. applProj fun PProj2 = vProj2 fun
  466. vApp :: HasCallStack => Plicity -> Value -> Value -> Value
  467. vApp p (VLam p' k) arg
  468. | p == p' = clCont k arg
  469. | otherwise = error $ "wrong plicity " ++ show p ++ " vs " ++ show p' ++ " in app " ++ show (App p (quote (VLam p' k)) (quote arg))
  470. vApp p (VNe h sp) arg = VNe h (sp Seq.:|> PApp p arg)
  471. vApp p (GluedVl h sp vl) arg = GluedVl h (sp Seq.:|> PApp p arg) (vApp p vl arg)
  472. vApp p (VSystem fs) arg = VSystem (fmap (flip (vApp p) arg) fs)
  473. vApp p (VInc (VPi _ _ (Closure _ r)) phi f) arg = VInc (r (vApp p f arg)) phi (vApp p f arg)
  474. vApp p (VCase env rng sc branches) arg =
  475. VCase env (fun \x -> let VPi _ _ (Closure _ r) = rng @@ x in r arg) sc
  476. (map (projIntoCase (flip (App p) (quote arg))) branches)
  477. vApp _ x _ = error $ "can't apply " ++ show (prettyTm (quote x))
  478. (@@) :: HasCallStack => Value -> Value -> Value
  479. (@@) = vApp Ex
  480. infixl 9 @@
  481. vProj1 :: HasCallStack => Value -> Value
  482. vProj1 (VPair a _) = a
  483. vProj1 (VNe h sp) = VNe h (sp Seq.:|> PProj1)
  484. vProj1 (GluedVl h sp vl) = GluedVl h (sp Seq.:|> PProj1) (vProj1 vl)
  485. vProj1 (VSystem fs) = VSystem (fmap vProj1 fs)
  486. vProj1 (VInc (VSigma a _) b c) = VInc a b (vProj1 c)
  487. vProj1 (VCase env rng sc branches) =
  488. VCase env rng sc (map (projIntoCase Proj1) branches)
  489. vProj1 x = error $ "can't proj1 " ++ show (prettyTm (quote x))
  490. vProj2 :: HasCallStack => Value -> Value
  491. vProj2 (VPair _ b) = b
  492. vProj2 (VNe h sp) = VNe h (sp Seq.:|> PProj2)
  493. vProj2 (GluedVl h sp vl) = GluedVl h (sp Seq.:|> PProj2) (vProj2 vl)
  494. vProj2 (VSystem fs) = VSystem (fmap vProj2 fs)
  495. vProj2 (VInc (VSigma _ (Closure _ r)) b c) = VInc (r (vProj1 c)) b (vProj2 c)
  496. vProj2 (VCase env rng sc branches) =
  497. VCase env rng sc (map (projIntoCase Proj2) branches)
  498. vProj2 x = error $ "can't proj2 " ++ show (prettyTm (quote x))
  499. projIntoCase :: (Term -> Term) -> (Term, Int, Term) -> (Term, Int, Term)
  500. projIntoCase fun (pat, nLams, term) = (pat, nLams, go nLams term) where
  501. go 0 x = fun x
  502. go n (Lam p x r) = Lam p x (go (n - 1) r)
  503. go n (PathIntro l a b r) = PathIntro l a b (go (n - 1) r)
  504. go _ x = x