less prototype, less bad code implementation of CCHM type theory
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

637 lines
23 KiB

  1. {-# LANGUAGE LambdaCase #-}
  2. {-# LANGUAGE BlockArguments #-}
  3. {-# LANGUAGE TupleSections #-}
  4. {-# LANGUAGE DeriveAnyClass #-}
  5. {-# LANGUAGE ScopedTypeVariables #-}
  6. {-# LANGUAGE DerivingStrategies #-}
  7. {-# LANGUAGE EmptyCase #-}
  8. module Elab where
  9. import Control.Arrow (Arrow(first))
  10. import Control.Monad.Reader
  11. import Control.Exception
  12. import qualified Data.Map.Strict as Map
  13. import qualified Data.Sequence as Seq
  14. import qualified Data.Set as Set
  15. import qualified Data.Text as T
  16. import Data.Maybe (fromMaybe)
  17. import Data.Traversable
  18. import Data.Text (Text)
  19. import Data.Map (Map)
  20. import Data.Typeable
  21. import Data.Foldable
  22. import Elab.Eval.Formula (possible, truthAssignments)
  23. import Elab.WiredIn
  24. import Elab.Monad
  25. import Elab.Eval
  26. import qualified Presyntax.Presyntax as P
  27. import Prettyprinter
  28. import Syntax.Pretty
  29. import Syntax
  30. infer :: P.Expr -> ElabM (Term, NFType)
  31. infer (P.Span ex a b) = withSpan a b $ infer ex
  32. infer (P.Var t) = do
  33. name <- getNameFor t
  34. nft <- getNfType name
  35. pure (Ref name, nft)
  36. infer (P.App p f x) = do
  37. (f, f_ty) <- infer f
  38. porp <- isPiType p f_ty
  39. case porp of
  40. It'sProd d r w -> do
  41. x <- check x d
  42. x_nf <- eval x
  43. pure (App p (w f) x, r x_nf)
  44. It'sPath li le ri wp -> do
  45. x <- check x VI
  46. x_nf <- eval x
  47. pure (IElim (quote (fun li)) (quote le) (quote ri) (wp f) x, li x_nf)
  48. It'sPartial phi a w -> do
  49. x <- check x (VEqStrict VI phi VI1)
  50. pure (App P.Ex (w f) x, a)
  51. It'sPartialP phi a w -> do
  52. x <- check x (VEqStrict VI phi VI1)
  53. x_nf <- eval x
  54. pure (App P.Ex (w f) x, a @@ x_nf)
  55. infer (P.Proj1 x) = do
  56. (tm, ty) <- infer x
  57. (d, _, wp) <- isSigmaType ty
  58. pure (Proj1 (wp tm), d)
  59. infer (P.Proj2 x) = do
  60. (tm, ty) <- infer x
  61. tm_nf <- eval tm
  62. (_, r, wp) <- isSigmaType ty
  63. pure (Proj2 (wp tm), r (vProj1 tm_nf))
  64. infer exp = do
  65. t <- newMeta VType
  66. tm <- switch $ check exp t
  67. pure (tm, t)
  68. check :: P.Expr -> NFType -> ElabM Term
  69. check (P.Span ex a b) ty = withSpan a b $ check ex ty
  70. check (P.Lam p var body) (VPi p' dom (Closure _ rng)) | p == p' =
  71. assume (Bound var 0) dom $ \name ->
  72. Lam p name <$> check body (rng (VVar name))
  73. check tm (VPi P.Im dom (Closure var rng)) =
  74. assume var dom $ \name ->
  75. Lam P.Im name <$> check tm (rng (VVar name))
  76. check (P.Lam p v b) ty = do
  77. porp <- isPiType p =<< forceIO ty
  78. case porp of
  79. It'sProd d r wp ->
  80. assume (Bound v 0) d $ \name ->
  81. wp . Lam p name <$> check b (r (VVar name))
  82. It'sPath li le ri wp -> do
  83. tm <- assume (Bound v 0) VI $ \var ->
  84. Lam P.Ex var <$> check b (force (li (VVar var)))
  85. tm_nf <- eval tm
  86. unify (tm_nf @@ VI0) le `catchElab` (throwElab . WhenCheckingEndpoint (Bound v 0) le ri VI0)
  87. unify (tm_nf @@ VI1) ri `catchElab` (throwElab . WhenCheckingEndpoint (Bound v 0) le ri VI1)
  88. pure (wp (PathIntro (quote (fun li)) (quote le) (quote ri) tm))
  89. It'sPartial phi a wp ->
  90. assume (Bound v 0) (VEqStrict VI phi VI1) $ \var ->
  91. wp . Lam p var <$> check b a
  92. It'sPartialP phi a wp ->
  93. assume (Bound v 0) (VEqStrict VI phi VI1) $ \var ->
  94. wp . Lam p var <$> check b (a @@ VVar var)
  95. check (P.Pair a b) ty = do
  96. (d, r, wp) <- isSigmaType =<< forceIO ty
  97. a <- check a d
  98. a_nf <- eval a
  99. b <- check b (r a_nf)
  100. pure (wp (Pair a b))
  101. check (P.Pi p s d r) ty = do
  102. isSort ty
  103. d <- check d ty
  104. d_nf <- eval d
  105. assume (Bound s 0) d_nf \var -> do
  106. r <- check r ty
  107. pure (Pi p var d r)
  108. check (P.Sigma s d r) ty = do
  109. isSort ty
  110. d <- check d ty
  111. d_nf <- eval d
  112. assume (Bound s 0) d_nf \var -> do
  113. r <- check r ty
  114. pure (Sigma var d r)
  115. check (P.Let items body) ty = do
  116. checkLetItems mempty items \decs -> do
  117. body <- check body ty
  118. pure (Let decs body)
  119. check (P.LamSystem bs) ty = do
  120. (extent, dom) <- isPartialType ty
  121. let dom_q x = quote (dom x)
  122. eqns <- for (zip [(0 :: Int)..] bs) $ \(n, (formula, rhs)) -> do
  123. phi <- checkFormula (P.condF formula)
  124. rhses <-
  125. case P.condV formula of
  126. Just t -> assume (Bound t 0) (VEqStrict VI phi VI1) $ \var -> do
  127. env <- ask
  128. for (truthAssignments phi (getEnv env)) $ \e -> do
  129. let env' = env{ getEnv = e }
  130. local (const env') $
  131. (Just var,) <$> check rhs (eval' env' (dom_q (VVar var)))
  132. Nothing -> do
  133. env <- ask
  134. n <- newName
  135. for (truthAssignments phi (getEnv env)) $ \e -> do
  136. let env' = env{ getEnv = e }
  137. local (const env') $
  138. (Nothing,) <$> check rhs (eval' env' (dom_q (VVar n)))
  139. pure (n, (phi, head rhses))
  140. unify extent (foldl ior VI0 (map (fst . snd) eqns))
  141. for_ eqns $ \(n, (formula, (binding, rhs))) -> do
  142. let
  143. k = case binding of
  144. Just v -> assume v (VEqStrict VI formula VI1) . const
  145. Nothing -> id
  146. k $ for_ eqns $ \(n', (formula', (binding, rhs'))) -> do
  147. let
  148. k = case binding of
  149. Just v -> assume v (VEqStrict VI formula VI1) . const
  150. Nothing -> id
  151. truth = possible mempty (iand formula formula')
  152. add [] = id
  153. add ((~(HVar x), True):xs) = redefine x VI VI1 . add xs
  154. add ((~(HVar x), False):xs) = redefine x VI VI0 . add xs
  155. k $ when ((n /= n') && fst truth) . add (Map.toList (snd truth)) $ do
  156. vl <- eval rhs
  157. vl' <- eval rhs'
  158. unify vl vl'
  159. `withNote` vsep [ pretty "These two cases must agree because they are both possible:"
  160. , indent 2 $ pretty '*' <+> prettyTm (quote formula) <+> operator (pretty "=>") <+> prettyTm rhs
  161. , indent 2 $ pretty '*' <+> prettyTm (quote formula') <+> operator (pretty "=>") <+> prettyTm rhs'
  162. ]
  163. `withNote` (pretty "Consider this face, where both are true:" <+> showFace False (snd truth))
  164. name <- newName
  165. let
  166. mkB name (Just v, b) = App P.Ex (Lam P.Ex v b) (Ref name)
  167. mkB _ (Nothing, b) = b
  168. pure (Lam P.Ex name (System (Map.fromList (map (\(_, (x, y)) -> (quote x, mkB name y)) eqns))))
  169. check (P.LamCase pats) ty =
  170. do
  171. porp <- isPiType P.Ex ty
  172. case porp of
  173. It'sProd dom rng wp -> do
  174. name <- newName
  175. let range = Lam P.Ex name (quote (rng (VVar name)))
  176. cases <- checkPatterns range [] pats \partialPats (pat, rhs) -> do
  177. checkPattern pat dom \pat wp boundary n_lams pat_nf -> do
  178. rhs <- check rhs (rng pat_nf)
  179. case boundary of
  180. -- If we're checking a higher constructor then we need to
  181. -- compute what the case expression computed so far does
  182. -- with all the faces
  183. -- and make sure that the current case agrees with that
  184. -- boundary
  185. Just boundary -> do
  186. rhs_nf <- eval (wp rhs)
  187. cases <- partialPats
  188. let
  189. (ty, a, b) = case pat_nf of
  190. VNe (HCon ty (ConName _ _ a b)) _ -> (ty, a, b)
  191. VNe (HPCon _ ty (ConName _ _ a b)) _ -> (ty, a, b)
  192. _ -> undefined
  193. dummies <- replicateM ((a + b) - length (getBoundaryNames boundary)) newName
  194. let
  195. base = appDummies (VVar <$> dummies) ty rhs_nf
  196. sys = boundaryFormulas (drop a dummies ++ getBoundaryNames boundary) (getBoundaryMap boundary)
  197. for_ (Map.toList sys) \(formula, side) -> do
  198. let rhs = cases @@ side
  199. for_ (truthAssignments formula mempty) $ \i -> do
  200. let vl = foldl (\v n -> vApp P.Ex v (lookup n)) base (getBoundaryNames boundary)
  201. lookup n = fromMaybe (VVar n) (snd <$> (Map.lookup n i))
  202. unify vl rhs
  203. `withNote` (pretty "From the boundary conditions of the constructor" <+> prettyTm (quote pat_nf) <> pretty ":")
  204. `withNote` vcat [ pretty "These must be the same because of the face"
  205. , indent 2 $ prettyVl (zonk formula) <+> operator (pretty "=>") <+> prettyVl (zonk side)
  206. , pretty "which is mapped to"
  207. , indent 2 $ prettyVl (zonk formula) <+> operator (pretty "=>") <+> prettyVl (zonk rhs)
  208. ]
  209. _ -> pure ()
  210. pure (pat, n_lams, wp rhs)
  211. let x = wp (Lam P.Ex name (Case range (Ref name) cases))
  212. pure x
  213. _ -> do
  214. dom <- newMeta VTypeω
  215. n <- newName' (Bound (T.singleton 'x') 0)
  216. assume n dom \_ -> do
  217. rng <- newMeta VTypeω
  218. throwElab $ NotEqual (VPi P.Ex dom (Closure n (const rng))) ty
  219. where
  220. checkPatterns _ acc [] _ = pure (reverse acc)
  221. checkPatterns rng acc (x:xs) k = do
  222. n <- newName
  223. (p, n, t) <- k (eval (Lam P.Ex n (Case rng (Ref n) acc))) x
  224. checkPatterns rng ((p, n, t):acc) xs k
  225. appDummies (v:vl) (VPi p _ (Closure _ r)) x = appDummies vl (r v) (vApp p x v)
  226. appDummies [] _ x = x
  227. appDummies vs t _ = error (show (vs, t))
  228. boundaryFormulas [] (VSystem fs) = fs
  229. boundaryFormulas (x:xs) k = boundaryFormulas xs $ k @@ VVar x
  230. boundaryFormulas a b = error (show (a, b))
  231. check P.Hole ty = do
  232. t <- newMeta' True ty
  233. pure (quote t)
  234. check exp ty = do
  235. (tm, has) <- switch $ infer exp
  236. wp <- isConvertibleTo has ty
  237. pure (wp tm)
  238. checkPattern :: P.Pattern -> NFSort -> (Term -> (Term -> Term) -> Maybe Boundary -> Int -> Value -> ElabM a) -> ElabM a
  239. checkPattern (P.PCap var) dom cont = do
  240. name <- asks (Map.lookup var . nameMap)
  241. case name of
  242. Just name@(ConName _ _ skip arity) -> do
  243. unless (arity == 0) $ throwElab $ UnsaturatedCon name
  244. (ty, wp, _) <- instantiate =<< getNfType name
  245. unify ty dom
  246. wrap <- skipLams skip
  247. cont (Con name) wrap Nothing 0 =<< eval (wp (Con name))
  248. Just name -> throwElab $ NotACon name
  249. Nothing -> assume (Bound var 0) dom \name -> cont (Ref name) (Lam P.Ex name) Nothing 0 (VVar name)
  250. checkPattern (P.PCon var args) dom cont =
  251. do
  252. name <- asks (Map.lookup var . nameMap)
  253. case name of
  254. Just name@(ConName _ _ nskip arity) -> do
  255. unless (arity == length args) $ throwElab $ UnsaturatedCon name
  256. (ty, wp, xs) <- instantiate =<< getNfType name
  257. _ <- isConvertibleTo (skipBinders arity ty) dom
  258. skip <- skipLams nskip
  259. t <- asks (Map.lookup name . boundaries)
  260. con <- quote <$> getValue name
  261. bindNames args ty $ \names wrap ->
  262. cont (Con name) (skip . wrap) (instBoundary xs <$> t) (length names) =<< eval (foldl (\x y -> App P.Ex x (Ref y)) (wp con) names)
  263. Just name -> throwElab $ NotACon name
  264. _ -> throwElab $ NotInScope (Bound var 0)
  265. where
  266. skipBinders :: Int -> NFType -> NFType
  267. skipBinders 0 t = t
  268. skipBinders n (VPi _ _ (Closure v r)) = skipBinders (n - 1) (r (VVar v))
  269. skipBinders _ _ = error $ "constructor type is wrong?"
  270. bindNames (n:ns) (VPi p d (Closure _ r)) k =
  271. assume (Bound n 0) d \n -> bindNames ns (r (VVar n)) \ns w ->
  272. k (n:ns) (Lam p n . w)
  273. bindNames [] _ k = k [] id
  274. bindNames xs t _ = error $ show (xs, t)
  275. instBoundary :: [Value] -> Boundary -> Boundary
  276. instBoundary metas (Boundary x y) = Boundary x (foldl (vApp P.Ex) y metas)
  277. instantiate :: NFType -> ElabM (NFType, Term -> Term, [Value])
  278. instantiate (VPi P.Im d (Closure _ k)) = do
  279. t <- newMeta d
  280. (ty, w, xs) <- instantiate (k t)
  281. pure (ty, \inner -> w (App P.Im inner (quote t)), t:xs)
  282. instantiate x = pure (x, id, [])
  283. skipLams :: Int -> ElabM (Term -> Term)
  284. skipLams 0 = pure id
  285. skipLams k = do
  286. n <- newName
  287. (Lam P.Im n . ) <$> skipLams (k - 1)
  288. checkLetItems :: Map Text (Maybe (Name, NFType)) -> [P.LetItem] -> ([(Name, Term, Term)] -> ElabM a) -> ElabM a
  289. checkLetItems map [] cont = do
  290. for_ (Map.toList map) $ \case
  291. (_, Nothing) -> pure ()
  292. (n, Just _) -> throwElab $ DeclaredUndefined (Bound n 0)
  293. cont []
  294. checkLetItems map (P.LetDecl v t:xs) cont = do
  295. t <- check t VTypeω
  296. t_nf <- eval t
  297. assume (Defined v 0) t_nf \name ->
  298. checkLetItems (Map.insert v (Just (name, t_nf)) map) xs cont
  299. checkLetItems map (P.LetBind name rhs:xs) cont = do
  300. case Map.lookup name map of
  301. Nothing -> do
  302. (tm, ty) <- infer rhs
  303. tm_nf <- eval tm
  304. makeLetDef (Defined name 0) ty tm_nf \name' ->
  305. checkLetItems map xs \xs ->
  306. cont ((name', quote ty, tm):xs)
  307. Just Nothing -> throwElab $ Redefinition (Defined name 0)
  308. Just (Just (name, ty_nf)) -> do
  309. rhs <- check rhs ty_nf
  310. rhs_nf <- eval rhs
  311. replaceLetDef name ty_nf rhs_nf $
  312. checkLetItems (Map.insert (getNameText name) Nothing map) xs \xs ->
  313. cont ((name, quote ty_nf, rhs):xs)
  314. checkFormula :: P.Formula -> ElabM Value
  315. checkFormula P.FTop = pure VI1
  316. checkFormula P.FBot = pure VI0
  317. checkFormula (P.FAnd x y) = iand <$> checkFormula x <*> checkFormula y
  318. checkFormula (P.FOr x y) = ior <$> checkFormula x <*> checkFormula y
  319. checkFormula (P.FIs0 x) = do
  320. nm <- getNameFor x
  321. ty <- getNfType nm
  322. unify ty VI
  323. pure (inot (VVar nm))
  324. checkFormula (P.FIs1 x) = do
  325. nm <- getNameFor x
  326. ty <- getNfType nm
  327. unify ty VI
  328. pure (VVar nm)
  329. isSort :: NFType -> ElabM ()
  330. isSort t = isSort (force t) where
  331. isSort VType = pure ()
  332. isSort VTypeω = pure ()
  333. isSort vt@(VNe HMeta{} _) = unify vt VType
  334. isSort vt = throwElab $ NotEqual vt VType
  335. data ProdOrPath
  336. = It'sProd { prodDmn :: NFType
  337. , prodRng :: NFType -> NFType
  338. , prodWrap :: Term -> Term
  339. }
  340. | It'sPath { pathLine :: NFType -> NFType
  341. , pathLeft :: Value
  342. , pathRight :: Value
  343. , pathWrap :: Term -> Term
  344. }
  345. | It'sPartial { partialExtent :: NFEndp
  346. , partialDomain :: Value
  347. , partialWrap :: Term -> Term
  348. }
  349. | It'sPartialP { partialExtent :: NFEndp
  350. , partialDomain :: Value
  351. , partialWrap :: Term -> Term
  352. }
  353. isPiType :: P.Plicity -> NFType -> ElabM ProdOrPath
  354. isPiType p x = isPiType p (force x) where
  355. isPiType p (VPi p' d (Closure _ k)) | p == p' = pure (It'sProd d k id)
  356. isPiType P.Ex (VPath li le ri) = pure (It'sPath (li @@) le ri id)
  357. isPiType P.Ex (VPartial phi a) = pure (It'sPartial phi a id)
  358. isPiType P.Ex (VPartialP phi a) = pure (It'sPartialP phi a id)
  359. isPiType P.Ex (VPi P.Im d (Closure _ k)) = do
  360. meta <- newMeta d
  361. porp <- isPiType P.Ex (k meta)
  362. pure $ case porp of
  363. It'sProd d r w -> It'sProd d r (\f -> w (App P.Im f (quote meta)))
  364. It'sPath l x y w -> It'sPath l x y (\f -> w (App P.Im f (quote meta)))
  365. It'sPartial phi a w -> It'sPartial phi a (\f -> w (App P.Im f (quote meta)))
  366. It'sPartialP phi a w -> It'sPartialP phi a (\f -> w (App P.Im f (quote meta)))
  367. isPiType p t = do
  368. dom <- newMeta VType
  369. name <- newName
  370. assume name dom $ \name -> do
  371. rng <- newMeta VType
  372. wp <- isConvertibleTo t (VPi p dom (Closure name (const rng)))
  373. pure (It'sProd dom (const rng) wp)
  374. isSigmaType :: NFType -> ElabM (Value, NFType -> NFType, Term -> Term)
  375. isSigmaType t = isSigmaType (force t) where
  376. isSigmaType (VSigma d (Closure _ k)) = pure (d, k, id)
  377. isSigmaType t = do
  378. dom <- newMeta VType
  379. name <- newName
  380. assume name dom $ \name -> do
  381. rng <- newMeta VType
  382. wp <- isConvertibleTo t (VSigma dom (Closure name (const rng)))
  383. pure (dom, const rng, wp)
  384. isPartialType :: NFType -> ElabM (NFEndp, Value -> Value)
  385. isPartialType t = isPartialType (force t) where
  386. isPartialType (VPartial phi a) = pure (phi, const a)
  387. isPartialType (VPartialP phi a) = pure (phi, (a @@))
  388. isPartialType t = do
  389. phi <- newMeta VI
  390. dom <- newMeta (VPartial phi VType)
  391. unify t (VPartialP phi dom)
  392. pure (phi, (dom @@))
  393. checkStatement :: P.Statement -> ElabM a -> ElabM a
  394. checkStatement (P.SpanSt s a b) k = withSpan a b $ checkStatement s k
  395. checkStatement (P.Decl name ty) k = do
  396. ty <- check ty VTypeω
  397. ty_nf <- eval ty
  398. assumes (flip Defined 0 <$> name) ty_nf (const k)
  399. checkStatement (P.Postulate []) k = k
  400. checkStatement (P.Postulate ((name, ty):xs)) k = do
  401. ty <- check ty VTypeω
  402. ty_nf <- eval ty
  403. assume (Defined name 0) ty_nf \name ->
  404. local (\e -> e { definedNames = Set.insert name (definedNames e) }) (checkStatement (P.Postulate xs) k)
  405. checkStatement (P.Defn name rhs) k = do
  406. ty <- asks (Map.lookup name . nameMap)
  407. case ty of
  408. Nothing -> do
  409. (tm, ty) <- infer rhs
  410. tm_nf <- eval tm
  411. makeLetDef (Defined name 0) ty tm_nf (const k)
  412. Just nm -> do
  413. ty_nf <- getNfType nm
  414. t <- asks (Set.member nm . definedNames)
  415. when t $ throwElab (Redefinition (Defined name 0))
  416. rhs <- check rhs ty_nf
  417. rhs_nf <- evalFix (Defined name 0) ty_nf rhs
  418. makeLetDef (Defined name 0) ty_nf rhs_nf $ \name ->
  419. local (\e -> e { definedNames = Set.insert name (definedNames e) }) k
  420. checkStatement (P.Builtin winame var) k = do
  421. wi <-
  422. case Map.lookup winame wiredInNames of
  423. Just wi -> pure wi
  424. _ -> throwElab $ NoSuchPrimitive winame
  425. let
  426. check = do
  427. nm <- getNameFor var
  428. ty <- getNfType nm
  429. unify ty (wiType wi)
  430. `withNote` hsep [ pretty "Previous definition of", pretty nm, pretty "here" ]
  431. `seeAlso` nm
  432. env <- ask
  433. liftIO $
  434. runElab check env `catch` \(_ :: NotInScope) -> pure ()
  435. define (Defined var 0) (wiType wi) (wiValue wi) $ \name ->
  436. local (\e -> e { definedNames = Set.insert name (definedNames e) }) k
  437. checkStatement (P.ReplNf e) k = do
  438. (e, _) <- infer e
  439. e_nf <- eval e
  440. h <- asks commHook
  441. liftIO $ h . prettyVl =<< zonkIO e_nf
  442. k
  443. checkStatement (P.ReplTy e) k = do
  444. (t, ty) <- infer e
  445. h <- asks commHook
  446. liftIO (h (prettyTm t <+> colon <+> align (prettyVl ty)))
  447. k
  448. checkStatement (P.Data name tele retk constrs) k =
  449. do
  450. checkTeleRetk tele retk \retk kind tele undef -> do
  451. kind_nf <- eval kind
  452. defineInternal (Defined name 0) kind_nf (\name' -> GluedVl (mkHead name') mempty (VNe (mkHead name') mempty)) \name' ->
  453. checkCons retk tele (VNe (mkHead name') (Seq.fromList (map makeProj tele))) constrs (local (markAsDef name' . undef) k)
  454. where
  455. makeProj (x, p, _) = PApp p (VVar x)
  456. markAsDef x e = e { definedNames = Set.insert x (definedNames e) }
  457. mkHead name
  458. | any (\case { (_, _, P.Path{}) -> True; _ -> False}) constrs = HData True name
  459. | otherwise = HData False name
  460. checkTeleRetk [] retk cont = do
  461. t <- check retk VTypeω
  462. r <- eval t
  463. cont r t [] id
  464. checkTeleRetk ((x, p, t):xs) retk cont = do
  465. (t, ty) <- infer t
  466. _ <- isConvertibleTo ty VTypeω
  467. t_nf <- eval t
  468. let rm nm e = e{ nameMap = Map.delete (getNameText nm) (nameMap e), getEnv = Map.delete nm (getEnv e) }
  469. assume (Bound x 0) t_nf $ \nm -> checkTeleRetk xs retk \ret k xs w -> cont ret (Pi p nm t k) ((nm, p, t_nf):xs) (rm nm . w)
  470. checkCons _ _ _et [] k = k
  471. checkCons retk n ret ((s, e, P.Point x ty):xs) k = withSpan s e $ do
  472. t <- check ty retk
  473. ty_nf <- eval t
  474. let
  475. (args, ret') = splitPi ty_nf
  476. closed = close n t
  477. n' = map (\(x, _, y) -> (x, P.Im, y)) n
  478. unify ret' ret
  479. closed_nf <- eval closed
  480. defineInternal (ConName x 0 (length n') (length args)) closed_nf (makeCon closed_nf mempty n' args) \_ -> checkCons retk n ret xs k
  481. checkCons retk n ret ((s, e, P.Path name indices return faces):xs) k = withSpan s e $ do
  482. fibrant retk
  483. (con, closed_nf, value, boundary) <- assumes (flip Bound 0 <$> indices) VI \indices -> do
  484. t <- check return retk
  485. ty_nf <- eval t
  486. let
  487. (args, ret') = splitPi ty_nf
  488. closed = close n (addArgs args (addInterval indices (quote ret')))
  489. n' = map (\(x, _, y) -> (x, P.Im, y)) n
  490. addArgs = flip $ foldr (\(x, p, t) -> Pi p x (quote t))
  491. addInterval = flip $ foldr (\n -> Pi P.Ex n I)
  492. envArgs ((x, _, y):xs) = assume x y . const . envArgs xs
  493. envArgs [] = id
  494. closed_nf <- eval closed
  495. unify ret' ret
  496. faces <- envArgs args $ for faces \(f, t) -> do
  497. phi <- checkFormula f
  498. t <- check t ret
  499. pure (phi, (quote phi, t))
  500. system <- eval $ foldr (\x -> Lam P.Ex x) (System (Map.fromList (map snd faces))) (map (\(x, _, _) -> x) n' ++ map (\(x, _, _) -> x) args ++ indices)
  501. unify (foldl ior VI0 (map fst faces)) (totalProp indices)
  502. `withNote` pretty "The formula determining the endpoints of a higher constructor must be a classical tautology"
  503. pure (ConName name 0 (length n') (length args + length indices), closed_nf, makePCon closed_nf mempty n' args indices system, Boundary indices system)
  504. defineInternal con closed_nf value \name -> addBoundary name boundary $ checkCons retk n ret xs k
  505. close [] t = t
  506. close ((x, _, y):xs) t = Pi P.Im x (quote y) (close xs t)
  507. splitPi (VPi p y (Closure x k)) = first ((x, p, y):) $ splitPi (k (VVar x))
  508. splitPi t = ([], t)
  509. makeCon cty sp [] [] con = VNe (HCon cty con) sp
  510. makeCon cty sp ((nm, p, _):xs) ys con = VLam p $ Closure nm \a -> makeCon cty (sp Seq.:|> PApp p a) xs ys con
  511. makeCon cty sp [] ((nm, p, _):ys) con = VLam p $ Closure nm \a -> makeCon cty (sp Seq.:|> PApp p a) [] ys con
  512. makePCon cty sp [] [] [] sys con = VNe (HPCon sys cty con) sp
  513. makePCon cty sp ((nm, p, _):xs) ys zs sys con = VLam p $ Closure nm \a -> makePCon cty (sp Seq.:|> PApp p a) xs ys zs (sys @@ a) con
  514. makePCon cty sp [] ((nm, p, _):ys) zs sys con = VLam p $ Closure nm \a -> makePCon cty (sp Seq.:|> PApp p a) [] ys zs (sys @@ a) con
  515. makePCon cty sp [] [] (nm:zs) sys con = VLam P.Ex $ Closure nm \a -> makePCon cty (sp Seq.:|> PApp P.Ex a) [] [] zs (sys @@ a) con
  516. totalProp (x:xs) = ior (VVar x) (inot (VVar x) `ior` totalProp xs)
  517. totalProp [] = VI0
  518. fibrant VTypeω = throwElab PathConPretype
  519. fibrant VType = pure ()
  520. fibrant x = error $ "not a constructor kind: " ++ show x
  521. checkProgram :: [P.Statement] -> ElabM a -> ElabM a
  522. checkProgram [] k = k
  523. checkProgram (st:sts) k = checkStatement st $ checkProgram sts k
  524. newtype Redefinition = Redefinition { getRedefName :: Name }
  525. deriving (Show, Typeable, Exception)
  526. data WhenCheckingEndpoint = WhenCheckingEndpoint { direction :: Name, leftEndp :: Value, rightEndp :: Value, whichIsWrong :: NFEndp, exc :: SomeException }
  527. deriving (Show, Typeable, Exception)
  528. data UnsaturatedCon = UnsaturatedCon { theConstr :: Name }
  529. deriving (Show, Typeable)
  530. deriving anyclass (Exception)
  531. data NotACon = NotACon { theNotConstr :: Name }
  532. deriving (Show, Typeable)
  533. deriving anyclass (Exception)
  534. data PathConPretype = PathConPretype
  535. deriving (Show, Typeable)
  536. deriving anyclass (Exception)
  537. newtype DeclaredUndefined = DeclaredUndefined { declaredUndefName :: Name }
  538. deriving (Eq, Show, Exception)