|
|
- -- We begin by adding some primitive bindings using the PRIMITIVE pragma.
- --
- -- It goes like this: PRIMITIVE primName varName.
- --
- -- If the varName is dropped, then it's taken to be the same as primName.
- --
- -- If there is a previous declaration for the varName, then the type
- -- is checked against the internally-known "proper" type for the primitive.
-
- -- Universe of fibrant types
- {-# PRIMITIVE Type #-}
-
- -- Universe of non-fibrant types
- {-# PRIMITIVE Pretype #-}
-
- -- Fibrant is a fancy word for "has a composition structure". Most types
- -- we inherit from MLTT are fibrant:
- --
- -- Stuff like products Π, sums Σ, naturals, booleans, lists, etc., all
- -- have composition structures.
- --
- -- The non-fibrant types are part of the structure of cubical
- -- categories: The interval, partial elements, cubical subtypes, ...
-
- -- The interval
- ---------------
-
- -- The interval has two endpoints i0 and i1.
- -- These form a de Morgan algebra.
- I : Pretype
- {-# PRIMITIVE Interval I #-}
-
- i0, i1 : I
- {-# PRIMITIVE i0 #-}
- {-# PRIMITIVE i1 #-}
-
- -- "minimum" on the interval
- iand : I -> I -> I
- {-# PRIMITIVE iand #-}
-
- -- "maximum" on the interval.
- ior : I -> I -> I
- {-# PRIMITIVE ior #-}
-
- -- The interpretation of iand as min and ior as max justifies the fact that
- -- ior i (inot i) != i1, since that equality only holds for the endpoints.
-
- -- inot i = 1 - i is a de Morgan involution.
- inot : I -> I
- {-# PRIMITIVE inot #-}
-
- -- Paths
- --------
-
- -- Since every function in type theory is internally continuous,
- -- and the two endpoints i0 and i1 are equal, we can take the type of
- -- equalities to be continuous functions out of the interval.
- -- That is, x ≡ y iff. ∃ f : I -> A, f i0 = x, f i1 = y.
-
- -- The type PathP generalises this to dependent products (i : I) -> A i.
-
- PathP : (A : I -> Type) -> A i0 -> A i1 -> Type
- {-# PRIMITIVE PathP #-}
-
- -- By taking the first argument to be constant we get the equality type
- -- Path.
-
- Path : {A : Type} -> A -> A -> Type
- Path {A} = PathP (\i -> A)
-
- -- reflexivity is given by constant paths
-
- refl : {A : Type} {x : A} -> Path x x
- refl {A} {x} i = x
-
- -- Symmetry (for dpeendent paths) is given by inverting the argument to the path, such that
- -- sym p i0 = p (inot i0) = p i1
- -- sym p i1 = p (inot i1) = p i0
- -- This has the correct endpoints.
-
- sym : {A : I -> Type} {x : A i0} {y : A i1} -> PathP A x y -> PathP (\i -> A (inot i)) y x
- sym p i = p (inot i)
-
- id : {A : Type} -> A -> A
- id x = x
-
- the : (A : Type) -> A -> A
- the A x = x
-
- -- The eliminator for the interval says that if you have x : A i0 and y : A i1,
- -- and x ≡ y, then you can get a proof A i for every element of the interval.
- iElim : {A : I -> Type} {x : A i0} {y : A i1} -> PathP A x y -> (i : I) -> A i
- iElim p i = p i
-
- -- This corresponds to the elimination principle for the HIT
- -- data I : Pretype where
- -- i0 i1 : I
- -- seg : i0 ≡ i1
-
- -- The singleton subtype of A at x is the type of elements of y which
- -- are equal to x.
- Singl : (A : Type) -> A -> Type
- Singl A x = (y : A) * Path x y
-
- -- Contractible types are those for which there exists an element to which
- -- all others are equal.
- isContr : Type -> Type
- isContr A = (x : A) * ((y : A) -> Path x y)
-
- -- Using the connection \i j -> y.2 (iand i j), we can prove that
- -- singletons are contracible. Together with transport later on,
- -- we get the J elimination principle of paths.
- singContr : {A : Type} {a : A} -> isContr (Singl A a)
- singContr {A} {a} = ((a, \i -> a), \y i -> (y.2 i, \j -> y.2 (iand i j)))
-
- -- Some more operations on paths. By rearranging parentheses we get a
- -- proof that the images of equal elements are themselves equal.
- cong : {A : Type} {B : A -> Type} (f : (x : A) -> B x) {x : A} {y : A} (p : Path x y) -> PathP (\i -> B (p i)) (f x) (f y)
- cong f p i = f (p i)
-
- -- These satisfy definitional equalities, like congComp and congId, which are
- -- propositional in vanilla MLTT.
- congComp : {A : Type} {B : Type} {C : Type}
- {f : A -> B} {g : B -> C} {x : A} {y : A}
- (p : Path x y)
- -> Path (cong g (cong f p)) (cong (\x -> g (f x)) p)
- congComp p = refl
-
- congId : {A : Type} {x : A} {y : A}
- (p : Path x y)
- -> Path (cong (id {A}) p) p
- congId p = refl
-
- -- Just like rearranging parentheses gives us cong, swapping the value
- -- and interval binders gives us function extensionality.
- funext : {A : Type} {B : A -> Type} {f : (x : A) -> B x} {g : (x : A) -> B x}
- (h : (x : A) -> Path (f x) (g x))
- -> Path f g
- funext h i x = h x i
-
- -- The proposition associated with an element of the interval
- -------------------------------------------------------------
-
- -- Associated with every element i : I of the interval, we have the type
- -- IsOne i which is inhabited only when i = i1. In the model, this
- -- corresponds to the map [φ] from the interval cubical set to the
- -- subobject classifier.
-
- IsOne : I -> Pretype
- {-# PRIMITIVE IsOne #-}
-
- -- The value itIs1 witnesses the fact that i1 = i1.
- itIs1 : IsOne i1
-
- {-# PRIMITIVE itIs1 #-}
-
- -- Partial elements
- -------------------
- --
- -- Since a function I -> A has two endpoints, and a function I -> I -> A
- -- has four endpoints + four functions I -> A as "sides" (obtained by
- -- varying argument while holding the other as a bound variable), we
- -- refer to elements of I^n -> A as "cubes".
-
- -- This justifies the existence of partial elements, which are, as the
- -- name implies, partial cubes. Namely, a Partial φ A is an element of A
- -- which depends on a proof that IsOne φ.
-
- Partial : I -> Type -> Pretype
- {-# PRIMITIVE Partial #-}
-
- -- There is also a dependent version where the type A is itself a
- -- partial element.
-
- PartialP : (phi : I) -> Partial phi Type -> Pretype
- {-# PRIMITIVE PartialP #-}
-
- -- Why is Partial φ A not just defined as φ -> A? The difference is that
- -- Partial φ A has an internal representation which definitionally relates
- -- any two partial elements which "agree everywhere", that is, have
- -- equivalent values for every possible assignment of variables which
- -- makes IsOne φ hold.
-
- -- Cubical Subtypes
- --------------------
-
- -- Given A : Type, phi : I, and a partial element u : A defined on φ,
- -- we have the type Sub A phi u, notated A[phi -> u] in the output of
- -- the type checker, whose elements are "extensions" of u.
-
- -- That is, element of A[phi -> u] is an element of A defined everywhere
- -- (a total element), which, when IsOne φ, agrees with u.
-
- Sub : (A : Type) (phi : I) -> Partial phi A -> Pretype
- {-# PRIMITIVE Sub #-}
-
- -- Every total element u : A can be made partial on φ by ignoring the
- -- constraint. Furthermore, this "totally partial" element agrees with
- -- the original total element on φ.
- inS : {A : Type} {phi : I} (u : A) -> Sub A phi (\x -> u)
- {-# PRIMITIVE inS #-}
-
- -- When IsOne φ, outS {A} {φ} {u} x reduces to u itIs1.
- -- This implements the fact that x agrees with u on φ.
- outS : {A : Type} {phi : I} {u : Partial phi A} -> Sub A phi u -> A
- {-# PRIMITIVE outS #-}
-
- -- The composition operation
- ----------------------------
-
- -- Now that we have syntax for specifying partial cubes,
- -- and specifying that an element agrees with a partial cube,
- -- we can describe the composition operation.
-
- comp : (A : I -> Type) {phi : I} (u : (i : I) -> Partial phi (A i)) -> Sub (A i0) phi (u i0) -> A i1
- {-# PRIMITIVE comp #-}
-
- -- In particular, when φ is a disjunction of the form
- -- (j = 0) || (j = 1), we can draw u as being a pair of lines forming a
- -- "tube", an open square with no floor or roof:
- --
- -- Given u = \j [ (i = i0) -> x, (i = i1) -> q j] on the extent i || ~i,
- -- we draw:
- --
- -- x q i1
- -- | |
- -- \j -> x | | \j -> q j
- -- | |
- -- x q i0
- --
- -- The composition operation says that, as long as we can provide a
- -- "floor" connecting x -- q i0, as a total element of A which, on
- -- phi, extends u i0, then we get the "roof" connecting x and q i1
- -- for free.
- --
- -- If we have a path p : x ≡ y, and q : y ≡ z, then we do get the
- -- "floor", and composition gets us the dotted line:
- --
- -- x..........z
- -- | |
- -- x | | q j
- -- | |
- -- x----------y
- -- p i
-
- trans : {A : Type} {x : A} {y : A} {z : A} -> PathP (\i -> A) x y -> PathP (\i -> A) y z -> PathP (\i -> A) x z
- trans {A} {x} p q i =
- comp (\i -> A)
- {ior i (inot i)}
- (\j [ (i = i0) -> x, (i = i1) -> q j ])
- (inS (p i))
-
- -- In particular when the formula φ = i0 we get the "opposite face" to a
- -- single point, which corresponds to transport.
-
- transp : (A : I -> Type) (x : A i0) -> A i1
- transp A x = comp A {i0} (\i [ ]) (inS x)
-
- -- Since we have the iand operator, we can also derive the *filler* of a cube,
- -- which connects the given face and the output of composition.
-
- fill : (A : I -> Type) {phi : I} (u : (i : I) -> Partial phi (A i)) -> Sub (A i0) phi (u i0) -> (i : I) -> A i
- fill A {phi} u a0 i =
- comp (\j -> A (iand i j))
- {ior phi (inot i)}
- (\j [ (phi = i1) as p -> u (iand i j) p, (i = i0) -> outS a0 ])
- (inS (outS a0))
-
- hfill : {A : Type} {phi : I} (u : (i : I) -> Partial phi A) -> Sub A phi (u i0) -> I -> A
- hfill {A} {phi} u a0 i = fill (\i -> A) {phi} u a0 i
-
- hcomp : {A : Type} {phi : I} (u : (i : I) -> Partial phi A) -> Sub A phi (u i0) -> A
- hcomp {A} {phi} u a0 = comp (\i -> A) {phi} u a0
-
- -- For instance, the filler of the previous composition square
- -- tells us that trans p refl = p:
-
- transRefl : {A : Type} {x : A} {y : A} (p : Path x y) -> Path (trans p refl) p
- transRefl p j i = fill (\i -> A) {ior i (inot i)} (\k [ (i = i0) -> x, (i = i1) -> y ]) (inS (p i)) (inot j)
-
- -- Reduction of composition
- ---------------------------
- --
- -- Composition reduces on the structure of the family A : I -> Type to create
- -- the element a1 : (A i1)[phi -> u i1].
- --
- -- For instance, when filling a cube of functions, the behaviour is to
- -- first transport backwards along the domain, apply the function, then
- -- forwards along the codomain.
-
- transpFun : {A : Type} {B : Type} {C : Type} {D : Type} (p : Path A B) (q : Path C D)
- -> (f : A -> C) -> Path (transp (\i -> p i -> q i) f)
- (\x -> transp (\i -> q i) (f (transp (\i -> p (inot i)) x)))
- transpFun p q f = refl
-
- -- transpDFun : {A : I -> Type} {B : (i : I) -> A i -> Type}
- -- -> (f : (x : A i0) -> B i0 x)
- -- -> Path (transp (\i -> (x : A i) -> B i x) f)
- -- (\x -> transp (\i -> B i (fill (\j -> A (inot j)) (\k []) (inS x) (inot i))) (f (fill (\j -> A (inot j)) (\k []) (inS x) i1)))
- -- transpDFun f = refl
-
- -- When considering the more general case of a composition respecing sides,
- -- the outer transport becomes a composition.
-
- -- Glueing and Univalence
- -------------------------
-
- -- First, let's get some definitions out of the way.
- --
- -- The *fiber* of a function f : A -> B at a point y : B is the type of
- -- inputs x : A which f takes to y, that is, for which there exists a
- -- path f(x) = y.
-
- fiber : {A : Type} {B : Type} -> (A -> B) -> B -> Type
- fiber f y = (x : A) * Path (f x) y
-
- -- An *equivalence* is a function where every fiber is contractible.
- -- That is, for every point in the codomain y : B, there is exactly one
- -- point in the input which f maps to y.
-
- isEquiv : {A : Type} {B : Type} -> (A -> B) -> Type
- isEquiv {A} {B} f = (y : B) -> isContr (fiber {A} {B} f y)
-
- -- By extracting this point, which must exist because the fiber is contractible,
- -- we can get an inverse of f:
-
- inverse : {A : Type} {B : Type} {f : A -> B} -> isEquiv f -> B -> A
- inverse eqv y = (eqv y) .1 .1
-
- -- We can prove that «inverse eqv» is a section of f:
-
- section : {A : Type} {B : Type} (f : A -> B) (eqv : isEquiv f) -> Path (\x -> f (inverse eqv x)) id
- section f eqv i y = (eqv y) .1 .2 i
-
- contr : {A : Type} {phi : I} -> isContr A -> (u : Partial phi A) -> A
- contr {A} {phi} p u = comp (\i -> A) {phi} (\i is1 -> p.2 (u is1) i) (inS (p.1))
-
- -- Proving that it's also a retraction is left as an exercise to the
- -- reader. We can package together a function and a proof that it's an
- -- equivalence to get a capital-E Equivalence.
-
- Equiv : (A : Type) (B : Type) -> Type
- Equiv A B = (f : A -> B) * isEquiv {A} {B} f
-
- -- The identity function is an equivalence between any type A and
- -- itself.
- idEquiv : {A : Type} -> isEquiv (id {A})
- idEquiv y = ((y, \i -> y), \u i -> (u.2 (inot i), \j -> u.2 (ior (inot i) j)))
-
- -- The glue operation expresses that "extensibility is invariant under
- -- equivalence". Less concisely, the Glue type and its constructor,
- -- glue, let us extend a partial element of a partial type to a total
- -- element of a total type, by "gluing" the partial type T using a
- -- partial equivalence e onto a total type A.
-
- -- In particular, we have that when φ = i1, Glue A [i1 -> (T, f)] = T.
-
- primGlue : (A : Type) {phi : I}
- (T : Partial phi Type)
- (e : PartialP phi (\o -> Equiv (T o) A))
- -> Type
- {-# PRIMITIVE Glue primGlue #-}
-
- -- The glue constructor extends the partial element t : T to a total
- -- element of Glue A [φ -> (T, e)] as long as we have a total im : A
- -- which is the image of f(t).
- --
- -- Agreeing with the condition that Glue A [i1 -> (T, e)] = T,
- -- we have that glue {A} {i1} t im => t.
- prim'glue : {A : Type} {phi : I} {T : Partial phi Type} {e : PartialP phi (\o -> Equiv (T o) A)}
- -> (t : PartialP phi T)
- -> (im : Sub A phi (\o -> (e o).1 (t o)))
- -> primGlue A T e
-
- {-# PRIMITIVE glue prim'glue #-}
-
- -- The unglue operation undoes a glueing. Since when φ = i1,
- -- Glue A [φ -> (T, f)] = T, the argument to primUnglue {A} {i1} ...
- -- will have type T, and so to get back an A we need to apply the
- -- partial equivalence f (defined everywhere).
-
- primUnglue : {A : Type} {phi : I} {T : Partial phi Type} {e : PartialP phi (\o -> Equiv (T o) A)}
- -> primGlue A {phi} T e -> A
-
- {-# PRIMITIVE unglue primUnglue #-}
-
- -- Diagramatically, i : I |- Glue A [(i \/ ~i) -> (T, e)] can be drawn
- -- as giving us the dotted line in:
- --
- -- T i0 ......... T i1
- -- | |
- -- | |
- -- e i0 |~ ~| e i1
- -- | |
- -- | |
- -- A i0 --------- A i1
- -- A
- --
- -- Where the the two "e" sides are equivalences, and the bottom side is
- -- the line i : I |- A.
- --
- -- Thus, by choosing a base type, a set of partial types and partial
- -- equivalences, we can make a line between two types (T i0) and (T i1).
-
- Glue : (A : Type) {phi : I} -> Partial phi ((X : Type) * Equiv X A) -> Type
- Glue A {phi} u = primGlue A {phi} (\o -> (u o).1) (\o -> (u o).2)
-
- -- For example, we can glue together the type A and the type B as long
- -- as there exists an Equiv A B.
- --
- -- A ............ B
- -- | |
- -- | |
- -- equiv |~ ua equiv ~| idEquiv {B}
- -- | |
- -- | |
- -- B ------------ B
- -- \i → B
- --
- univalence : {A : Type} {B : Type} -> Equiv A B -> Path A B
- univalence {A} {B} equiv i =
- Glue B (\[ (i = i0) -> (A, equiv),
- (i = i1) -> (B, the B, idEquiv {B}) ])
-
-
- -- The fact that this diagram has 2 filled-in B sides explains the
- -- complication in the proof below.
- --
- -- In particular, the actual behaviour of transp (\i -> univalence f i)
- -- (x : A) is not just to apply f x to get a B (the left side), it also
- -- needs to:
- --
- -- * For the bottom side, compose along (\i -> B) (the bottom side)
- -- * For the right side, apply the inverse of the identity, which
- -- is just identity, to get *some* b : B
- --
- -- But that b : B might not agree with the sides of the composition
- -- operation in a more general case, so it composes along (\i -> B)
- -- *again*!
- --
- -- Thus the proof: a simple cubical argument suffices, since
- -- for any composition, its filler connects either endpoints. So
- -- we need to come up with a filler for the bottom and right faces.
-
- univalenceBeta : {A : Type} {B : Type} (f : Equiv A B) -> Path (transp (\i -> univalence f i)) f.1
- univalenceBeta {A} {B} f i a =
- let
- -- The bottom left corner
- botLeft : B
- botLeft = transp (\i -> B) (f.1 a)
-
- -- The "bottom face" filler connects the bottom-left corner, f.1 a,
- -- and the bottom-right corner, which is the transport of f.1 a
- -- along \i -> B.
- botFace : Path (f.1 a) botLeft
- botFace i = fill (\i -> B) (\j []) (inS (f.1 a)) i
-
- -- The "right face" filler connects the bottom-right corner and the
- -- upper-right corner, which is again a simple transport along
- -- \i -> B.
- rightFace : Path (transp (\i -> B) botLeft) botLeft
- rightFace i = fill (\i -> B) (\j []) (inS botLeft) (inot i)
-
- -- The goal is a path between the bottom-left and top-right corners,
- -- which we can get by composing (in the path sense) the bottom and
- -- right faces.
- goal : Path (transp (\i -> B) botLeft) (f.1 a)
- goal = trans rightFace (\i -> botFace (inot i))
- in goal i
-
- -- The terms univalence + univalenceBeta suffice to prove the "full"
- -- univalence axiom of Voevodsky, as can be seen in the paper
- --
- -- Ian Orton, & Andrew M. Pitts. (2017). Decomposing the Univalence Axiom.
- --
- -- Available freely here: https://arxiv.org/abs/1712.04890v3
-
- J : {A : Type} {x : A}
- (P : (y : A) -> Path x y -> Type)
- (d : P x (\i -> x))
- {y : A} (p : Path x y)
- -> P y p
- J P d p = transp (\i -> P (p i) (\j -> p (iand i j))) d
-
-
- -- Isomorphisms
- ---------------
- --
- -- Since isomorphisms are a much more convenient notion of equivalence
- -- than contractible fibers, it's natural to ask why the CCHM paper, and
- -- this implementation following that, decided on the latter for our
- -- definition of equivalence.
-
- isIso : {A : Type} -> {B : Type} -> (A -> B) -> Type
- isIso {A} {B} f = (g : B -> A) * ((y : B) -> Path (f (g y)) y) * ((x : A) -> Path (g (f x)) x)
-
- -- The reason is that the family of types IsIso is not a proposition!
- -- This means that there can be more than one way for a function to be
- -- an equivalence. This is Lemma 4.1.1 of the HoTT book.
-
- Iso : Type -> Type -> Type
- Iso A B = (f : A -> B) * isIso f
-
- -- Nevertheless, we can prove that any function with an isomorphism
- -- structure has contractible fibers, using a cubical argument adapted
- -- from CCHM's implementation of cubical type theory:
- --
- -- https://github.com/mortberg/cubicaltt/blob/master/experiments/isoToEquiv.ctt#L7-L55
-
- IsoToEquiv : {A : Type} {B : Type} -> Iso A B -> Equiv A B
- IsoToEquiv {A} {B} iso = (f, \y -> (fCenter y, fIsCenter y)) where
- f = iso.1
- g = iso.2.1
- s = iso.2.2.1
- t = iso.2.2.2
-
- lemIso : (y : B) (x0 : A) (x1 : A) (p0 : Path (f x0) y) (p1 : Path (f x1) y)
- -> PathP (\i -> fiber f y) (x0, p0) (x1, p1)
- lemIso y x0 x1 p0 p1 =
- let
- rem0 : Path x0 (g y)
- rem0 i = comp (\i -> A) (\k [ (i = i0) -> t x0 k, (i = i1) -> g y ]) (inS (g (p0 i)))
-
- rem1 : Path x1 (g y)
- rem1 i = comp (\i -> A) (\k [ (i = i0) -> t x1 k, (i = i1) -> g y ]) (inS (g (p1 i)))
-
- p : Path x0 x1
- p i = comp (\i -> A) (\k [ (i = i0) -> rem0 (inot k), (i = i1) -> rem1 (inot k) ]) (inS (g y))
-
- fill0 : I -> I -> A
- fill0 i j = comp (\i -> A) (\k [ (i = i0) -> t x0 (iand j k)
- , (i = i1) -> g y
- , (j = i0) -> g (p0 i)
- ])
- (inS (g (p0 i)))
-
- fill1 : I -> I -> A
- fill1 i j = comp (\i -> A) (\k [ (i = i0) -> t x1 (iand j k)
- , (i = i1) -> g y
- , (j = i0) -> g (p1 i) ])
- (inS (g (p1 i)))
-
- fill2 : I -> I -> A
- fill2 i j = comp (\i -> A) (\k [ (i = i0) -> rem0 (ior j (inot k))
- , (i = i1) -> rem1 (ior j (inot k))
- , (j = i1) -> g y ])
- (inS (g y))
-
- sq : I -> I -> A
- sq i j = comp (\i -> A) (\k [ (i = i0) -> fill0 j (inot k)
- , (i = i1) -> fill1 j (inot k)
- , (j = i1) -> g y
- , (j = i0) -> t (p i) (inot k) ])
- (inS (fill2 i j))
-
- sq1 : I -> I -> B
- sq1 i j = comp (\i -> B) (\k [ (i = i0) -> s (p0 j) k
- , (i = i1) -> s (p1 j) k
- , (j = i0) -> s (f (p i)) k
- , (j = i1) -> s y k
- ])
- (inS (f (sq i j)))
- in \i -> (p i, \j -> sq1 i j)
-
- fCenter : (y : B) -> fiber f y
- fCenter y = (g y, s y)
-
- fIsCenter : (y : B) (w : fiber f y) -> Path (fCenter y) w
- fIsCenter y w = lemIso y (fCenter y).1 w.1 (fCenter y).2 w.2
-
- -- We can prove that any involutive function is an isomorphism, since
- -- such a function is its own inverse.
-
- involToIso : {A : Type} (f : A -> A) -> ((x : A) -> Path (f (f x)) x) -> isIso f
- involToIso {A} f inv = (f, inv, inv)
-
- -- An example of univalence
- ---------------------------
- --
- -- The classic example of univalence is the equivalence
- -- not : Bool \simeq Bool.
- --
- -- We define it here.
-
- data Bool : Type where
- true : Bool
- false : Bool
-
- not : Bool -> Bool
- not = \case
- true -> false
- false -> true
-
- elimBool : (P : Bool -> Type) -> P true -> P false -> (b : Bool) -> P b
- elimBool P x y = \case
- true -> x
- false -> y
-
- if : {A : Type} -> A -> A -> Bool -> A
- if x y = \case
- true -> x
- false -> y
-
- -- By pattern matching it suffices to prove (not (not true)) ≡ true and
- -- not (not false) ≡ false. Since not (not true) computes to true (resp.
- -- false), both proofs go through by refl.
- notInvol : (x : Bool) -> Path (not (not x)) x
- notInvol = elimBool (\b -> Path (not (not b)) b) refl refl
-
- notp : Path Bool Bool
- notp = univalence (IsoToEquiv (not, involToIso not notInvol))
-
- -- This path actually serves to prove a simple lemma about the universes
- -- of HoTT, namely, that any univalent universe is not a 0-type. If we
- -- had HITs, we could prove that this fact holds for any n, but for now,
- -- proving it's not an h-set is the furthest we can go.
-
- -- First we define what it means for something to be false. In type theory,
- -- we take ¬P = P → ⊥, where the bottom type is the only type satisfying
- -- the elimination principle
- --
- -- elimBottom : (P : bottom -> Type) -> (b : bottom) -> P b
- --
- -- This follows from setting bottom := ∀ A, A.
-
- bottom : Type
- bottom = {A : Type} -> A
-
- elimBottom : (P : bottom -> Type) -> (b : bottom) -> P b
- elimBottom P x = x
-
- -- We prove that true != false by transporting along the path
- --
- -- \i -> if (Bool -> Bool) A (p i)
- -- (Bool -> Bool) ------------------------------------ A
- --
- -- To verify that this has the correct endpoints, check out the endpoints
- -- for p:
- --
- -- true ------------------------------------ false
- --
- -- and evaluate the if at either end.
-
- trueNotFalse : Path true false -> bottom
- trueNotFalse p {A} = transp (\i -> if (Bool -> Bool) A (p i)) id
-
- -- To be an h-Set is to have no "higher path information". Alternatively,
- --
- -- isHSet A = (x : A) (y : A) -> isHProp (Path x y)
- --
- isHSet : Type -> Type
- isHSet A = {x : A} {y : A} (p : Path x y) (q : Path x y) -> Path p q
-
- -- We can prove *a* contradiction (note: this is a direct proof!) by adversarially
- -- choosing two paths p, q that we know are not equal. Since "equal" paths have
- -- equal behaviour when transporting, we can choose two paths p, q and a point x
- -- such that transporting x along p gives a different result from x along q.
- --
- -- Since transp notp = not but transp refl = id, that's what we go with. The choice
- -- of false as the point x is just from the endpoints of trueNotFalse.
-
- universeNotSet : isHSet Type -> bottom
- universeNotSet itIs = trueNotFalse (\i -> transp (\j -> itIs notp refl i j) false)
-
- -- Funext is an inverse of happly
- ---------------------------------
- --
- -- Above we proved function extensionality, namely, that functions
- -- pointwise equal everywhere are themselves equal.
- -- However, this formulation of the axiom is known as "weak" function
- -- extensionality. The strong version is as follows:
-
- Hom : {A : Type} {B : A -> Type} (f : (x : A) -> B x) -> (g : (x : A) -> B x) -> Type
- Hom {A} f g = (x : A) -> Path (f x) (g x)
-
- happly : {A : Type} {B : A -> Type} {f : (x : A) -> B x} {g : (x : A) -> B x}
- -> (p : Path f g) -> Hom f g
- happly p x i = p i x
-
- -- Strong function extensionality: happly is an equivalence.
-
- happlyIsIso : {A : Type} {B : A -> Type} {f : (x : A) -> B x} {g : (x : A) -> B x}
- -> isIso {Path f g} {Hom f g} happly
- happlyIsIso {A} {B} {f} {g} = (funext {A} {B} {f} {g}, \hom -> refl, \path -> refl)
-
- pathIsHom : {A : Type} {B : A -> Type} {f : (x : A) -> B x} {g : (x : A) -> B x}
- -> Path (Path f g) (Hom f g)
- pathIsHom {A} {B} {f} {g} =
- let
- theIso : Iso (Path f g) (Hom f g)
- theIso = (happly {A} {B} {f} {g}, happlyIsIso {A} {B} {f} {g})
- in univalence (IsoToEquiv theIso)
-
- -- Inductive types
- -------------------
- --
- -- An inductive type is a type freely generated by a finite set of
- -- constructors. For instance, the type of natural numbers is generated
- -- by the constructors for "zero" and "successor".
-
- data Nat : Type where
- zero : Nat
- succ : Nat -> Nat
-
- -- Pattern matching allows us to prove that these initial types are
- -- initial algebras for their corresponding functors.
-
- Nat_elim : (P : Nat -> Type) -> P zero -> ((x : Nat) -> P x -> P (succ x)) -> (x : Nat) -> P x
- Nat_elim P pz ps = \case
- zero -> pz
- succ x -> ps x (Nat_elim P pz ps x)
-
- -- The type of integers can be defined as A + B, where "pos n" means +n
- -- and "neg n" means -(n + 1).
-
- data Int : Type where
- pos : Nat -> Int
- neg : Nat -> Int
-
- -- On this representation we can define the successor and predecessor
- -- functions by (nested) induction.
-
- sucZ : Int -> Int
- sucZ = \case
- pos n -> pos (succ n)
- neg n ->
- let suc_neg : Nat -> Int
- suc_neg = \case
- zero -> pos zero
- succ n -> neg n
- in suc_neg n
-
- predZ : Int -> Int
- predZ = \case
- pos n ->
- let pred_pos : Nat -> Int
- pred_pos = \case
- zero -> neg zero
- succ n -> pos n
- in pred_pos n
- neg n -> neg (succ n)
-
- -- And prove that the successor function is an isomorphism, and thus, an
- -- equivalence.
-
- sucEquiv : isIso sucZ
- sucEquiv =
- let
- sucPredZ : (x : Int) -> Path (sucZ (predZ x)) x
- sucPredZ = \case
- pos n ->
- let k : (n : Nat) -> Path (sucZ (predZ (pos n))) (pos n)
- k = \case
- zero -> refl
- succ n -> refl
- in k n
- neg n -> refl
- predSucZ : (x : Int) -> Path (predZ (sucZ x)) x
- predSucZ = \case
- pos n -> refl
- neg n ->
- let k : (n : Nat) -> Path (predZ (sucZ (neg n))) (neg n)
- k = \case
- zero -> refl
- succ n -> refl
- in k n
- in (predZ, sucPredZ, predSucZ)
-
- -- Univalence gives us a path between integers such that transp intPath
- -- x = suc x, transp (sym intPath) x = pred x
-
- intPath : Path Int Int
- intPath = univalence (IsoToEquiv (sucZ, sucEquiv))
-
- -- Higher inductive types
- -------------------------
- --
- -- While inductive types let us generate discrete spaces like the
- -- naturals or integers, they do not support defining higher-dimensional
- -- structures given by spaces with points and paths.
-
- -- A very simple higher inductive type is the interval, given by
-
- data Interval : Type where
- ii0 : Interval
- ii1 : Interval
- seg i : Interval [ (i = i0) -> ii0, (i = i1) -> ii1 ]
-
- -- This expresses that we have two points ii0 and ii1 and a path (\i ->
- -- seg i) with endpoints ii0 and ii1.
-
- -- With this type we can reproduce the proof of Lemma 6.3.2 from the
- -- HoTT book:
-
- iFunext : {A : Type} {B : A -> Type} (f : (x : A) -> B x) (g : (x : A) -> B x) -> ((x : A) -> Path (f x) (g x)) -> Path f g
- iFunext f g p i = h' (seg i) where
- h : (x : A) -> Interval -> B x
- h x = \case
- ii0 -> f x
- ii1 -> g x
- seg i -> p x i
-
- h' : Interval -> (x : A) -> B x
- h' i x = h x i
-
- -- Of course, Cubical Type Theory also has an interval (pre)type, but
- -- that, unlike the Interval here, is not Kan: it has no composition
- -- structure.
-
- -- Another simple higher-inductive type is the circle, with a point and
- -- a non-trivial loop, (\i -> loop i).
-
- data S1 : Type where
- base : S1
- loop i : S1 [ (i = i1) -> base, (i = i0) -> base ]
-
- -- By writing a function from the circle to the universe of types Type,
- -- we can calculate winding numbers along the circle.
-
- helix : S1 -> Type
- helix = \case
- base -> Int
- loop i -> intPath i
-
- winding : Path base base -> Int
- winding p = transp (\i -> helix (p i)) (pos zero)
-
- -- For instance, going around the loop once has a winding number of +1,
-
- windingLoop : Path (winding (\i -> loop i)) (pos (succ zero))
- windingLoop = refl
-
- -- Going backwards has a winding number of -1 (remember the
- -- representation of integers),
-
- windingSymLoop : Path (winding (\i -> loop (inot i))) (neg zero)
- windingSymLoop = refl
-
- -- And going around the trivial loop (\i -> base) goes around the the
- -- non-trivial loop (\i -> loop) zero times.
-
- windingBase : Path (winding (\i -> base)) (pos zero)
- windingBase = refl
-
- -- One particularly general higher inductive type is the homotopy pushout,
- -- which can be seen as a kind of sum B + C with the extra condition that
- -- whenever x and y are in the image of f (resp. g), inl x ≡ inr y.
-
- data Pushout {A : Type} {B : Type} {C : Type} (f : A -> B) (g : A -> C) : Type where
- inl : (x : B) -> Pushout f g
- inr : (y : C) -> Pushout f g
- push i : (a : A) -> Pushout f g [ (i = i0) -> inl (f a), (i = i1) -> inr (g a) ]
-
- -- The name is due to the category-theoretical notion of pushout.
- -- TODO: finish writing this tomorrow lol
-
- data Susp (A : Type) : Type where
- north : Susp A
- south : Susp A
- merid i : A -> Susp A [ (i = i0) -> north, (i = i1) -> south ]
-
- data Unit : Type where
- tt : Unit
-
- poSusp : Type -> Type
- poSusp A = Pushout {A} {Unit} {Unit} (\x -> tt) (\x -> tt)
-
- poSusp_to_Susp : {A : Type} -> poSusp A -> Susp A
- poSusp_to_Susp = \case
- inl x -> north
- inr x -> south
- push x i -> merid x i
-
- Susp_to_poSusp : {A : Type} -> Susp A -> poSusp A
- Susp_to_poSusp = \case
- north -> inl tt
- south -> inr tt
- merid x i -> push x i
-
- Susp_to_poSusp_to_Susp : {A : Type} -> (x : Susp A) -> Path (poSusp_to_Susp (Susp_to_poSusp x)) x
- Susp_to_poSusp_to_Susp = \case
- north -> refl
- south -> refl
- merid x i -> refl
-
- unitEta : (x : Unit) -> Path x tt
- unitEta = \case tt -> refl
-
- poSusp_to_Susp_to_poSusp : {A : Type} -> (x : poSusp A) -> Path (Susp_to_poSusp (poSusp_to_Susp x)) x
- poSusp_to_Susp_to_poSusp {A} = \case
- inl x -> cong inl (sym (unitEta x))
- inr x -> cong inr (sym (unitEta x))
- push x i -> refl
-
- Susp_is_poSusp : {A : Type} -> Path (Susp A) (poSusp A)
- Susp_is_poSusp {A} = univalence (IsoToEquiv (Susp_to_poSusp {A}, poSusp_to_Susp {A}, poSusp_to_Susp_to_poSusp {A}, Susp_to_poSusp_to_Susp {A}))
|