less prototype, less bad code implementation of CCHM type theory
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

474 lines
15 KiB

  1. {-# LANGUAGE LambdaCase #-}
  2. {-# LANGUAGE DeriveAnyClass #-}
  3. {-# LANGUAGE ScopedTypeVariables #-}
  4. {-# LANGUAGE ViewPatterns #-}
  5. module Elab.Eval where
  6. import Control.Monad.Reader
  7. import Control.Exception
  8. import qualified Data.Map.Strict as Map
  9. import qualified Data.Sequence as Seq
  10. import qualified Data.Set as Set
  11. import qualified Data.Text as T
  12. import Data.Sequence (Seq)
  13. import Data.Traversable
  14. import Data.Set (Set)
  15. import Data.Typeable
  16. import Data.Foldable
  17. import Data.IORef
  18. import Data.Maybe
  19. import Elab.Eval.Formula
  20. import Elab.Monad
  21. import GHC.Stack
  22. import Presyntax.Presyntax (Plicity(..))
  23. import Prettyprinter
  24. import Syntax.Pretty
  25. import Syntax
  26. import System.IO.Unsafe
  27. import {-# SOURCE #-} Elab.WiredIn
  28. eval :: Term -> ElabM Value
  29. eval t = asks (flip eval' t)
  30. forceIO :: MonadIO m => Value -> m Value
  31. forceIO mv@(VNe (HMeta (MV _ cell)) args) = do
  32. solved <- liftIO $ readIORef cell
  33. case solved of
  34. Just vl -> forceIO $ foldl applProj vl args
  35. Nothing -> pure mv
  36. forceIO vl@(VSystem fs) =
  37. case Map.lookup VI1 fs of
  38. Just x -> forceIO x
  39. Nothing -> pure vl
  40. forceIO (VComp line phi u a0) = comp line <$> forceIO phi <*> pure u <*> pure a0
  41. forceIO x = pure x
  42. applProj :: Value -> Projection -> Value
  43. applProj fun (PApp p arg) = vApp p fun arg
  44. applProj fun (PIElim l x y i) = ielim l x y fun i
  45. applProj fun (POuc a phi u) = outS a phi u fun
  46. applProj fun PProj1 = vProj1 fun
  47. applProj fun PProj2 = vProj2 fun
  48. force :: Value -> Value
  49. force = unsafePerformIO . forceIO
  50. -- everywhere force
  51. zonkIO :: Value -> IO Value
  52. zonkIO (VNe hd sp) = do
  53. sp' <- traverse zonkSp sp
  54. case hd of
  55. HMeta (MV _ cell) -> do
  56. solved <- liftIO $ readIORef cell
  57. case solved of
  58. Just vl -> zonkIO $ foldl applProj vl sp'
  59. Nothing -> pure $ VNe hd sp'
  60. hd -> pure $ VNe hd sp'
  61. where
  62. zonkSp (PApp p x) = PApp p <$> zonkIO x
  63. zonkSp (PIElim l x y i) = PIElim <$> zonkIO l <*> zonkIO x <*> zonkIO y <*> zonkIO i
  64. zonkSp (POuc a phi u) = POuc <$> zonkIO a <*> zonkIO phi <*> zonkIO u
  65. zonkSp PProj1 = pure PProj1
  66. zonkSp PProj2 = pure PProj2
  67. zonkIO (VLam p (Closure s k)) = pure $ VLam p (Closure s (zonk . k))
  68. zonkIO (VPi p d (Closure s k)) = VPi p <$> zonkIO d <*> pure (Closure s (zonk . k))
  69. zonkIO (VSigma d (Closure s k)) = VSigma <$> zonkIO d <*> pure (Closure s (zonk . k))
  70. zonkIO (VPair a b) = VPair <$> zonkIO a <*> zonkIO b
  71. zonkIO (VPath line x y) = VPath <$> zonkIO line <*> zonkIO x <*> zonkIO y
  72. zonkIO (VLine line x y f) = VLine <$> zonkIO line <*> zonkIO x <*> zonkIO y <*> zonkIO f
  73. -- Sorts
  74. zonkIO VType = pure VType
  75. zonkIO VTypeω = pure VTypeω
  76. zonkIO VI = pure VI
  77. zonkIO VI0 = pure VI0
  78. zonkIO VI1 = pure VI1
  79. zonkIO (VIAnd x y) = iand <$> zonkIO x <*> zonkIO y
  80. zonkIO (VIOr x y) = ior <$> zonkIO x <*> zonkIO y
  81. zonkIO (VINot x) = inot <$> zonkIO x
  82. zonkIO (VIsOne x) = VIsOne <$> zonkIO x
  83. zonkIO (VIsOne1 x) = VIsOne1 <$> zonkIO x
  84. zonkIO (VIsOne2 x) = VIsOne2 <$> zonkIO x
  85. zonkIO VItIsOne = pure VItIsOne
  86. zonkIO (VPartial x y) = VPartial <$> zonkIO x <*> zonkIO y
  87. zonkIO (VPartialP x y) = VPartialP <$> zonkIO x <*> zonkIO y
  88. zonkIO (VSystem fs) = do
  89. t <- for (Map.toList fs) $ \(a, b) -> (,) <$> zonkIO a <*> zonkIO b
  90. pure (mkVSystem (Map.fromList t))
  91. zonkIO (VSub a b c) = VSub <$> zonkIO a <*> zonkIO b <*> zonkIO c
  92. zonkIO (VInc a b c) = VInc <$> zonkIO a <*> zonkIO b <*> zonkIO c
  93. zonkIO (VComp a b c d) = comp <$> zonkIO a <*> zonkIO b <*> zonkIO c <*> zonkIO d
  94. zonkIO (VGlueTy a phi ty e) = glueType <$> zonkIO a <*> zonkIO phi <*> zonkIO ty <*> zonkIO e
  95. zonkIO (VGlue a phi ty e t x) = glueElem <$> zonkIO a <*> zonkIO phi <*> zonkIO ty <*> zonkIO e <*> zonkIO t <*> zonkIO x
  96. zonkIO (VUnglue a phi ty e x) = unglue <$> zonkIO a <*> zonkIO phi <*> zonkIO ty <*> zonkIO e <*> zonkIO x
  97. mkVSystem :: Map.Map Value Value -> Value
  98. mkVSystem map =
  99. case Map.lookup VI1 map of
  100. Just x -> x
  101. Nothing -> VSystem (Map.filterWithKey (\k _ -> k /= VI0) map)
  102. zonk :: Value -> Value
  103. zonk = unsafePerformIO . zonkIO
  104. eval' :: ElabEnv -> Term -> Value
  105. eval' env (Ref x) =
  106. case Map.lookup x (getEnv env) of
  107. Just (_, vl) -> vl
  108. _ -> VNe (HVar x) mempty
  109. eval' env (App p f x) = vApp p (eval' env f) (eval' env x)
  110. eval' env (Lam p s t) =
  111. VLam p $ Closure s $ \a ->
  112. eval' env { getEnv = Map.insert s (error "type of abs", a) (getEnv env) } t
  113. eval' env (Pi p s d t) =
  114. VPi p (eval' env d) $ Closure s $ \a ->
  115. eval' env { getEnv = (Map.insert s (error "type of abs", a) (getEnv env))} t
  116. eval' _ (Meta m) = VNe (HMeta m) mempty
  117. eval' env (Sigma s d t) =
  118. VSigma (eval' env d) $ Closure s $ \a ->
  119. eval' env { getEnv = Map.insert s (error "type of abs", a) (getEnv env) } t
  120. eval' e (Pair a b) = VPair (eval' e a) (eval' e b)
  121. eval' e (Proj1 a) = vProj1 (eval' e a)
  122. eval' e (Proj2 a) = vProj2 (eval' e a)
  123. eval' _ Type = VType
  124. eval' _ Typeω = VTypeω
  125. eval' _ I = VI
  126. eval' _ I0 = VI0
  127. eval' _ I1 = VI1
  128. eval' e (IAnd x y) = iand (eval' e x) (eval' e y)
  129. eval' e (IOr x y) = ior (eval' e x) (eval' e y)
  130. eval' e (INot x) = inot (eval' e x)
  131. eval' e (PathP l a b) = VPath (eval' e l) (eval' e a) (eval' e b)
  132. eval' e (IElim l x y f i) = ielim (eval' e l) (eval' e x) (eval' e y) (eval' e f) (eval' e i)
  133. eval' e (PathIntro p x y f) = VLine (eval' e p) (eval' e x) (eval' e y) (eval' e f)
  134. eval' e (IsOne i) = VIsOne (eval' e i)
  135. eval' e (IsOne1 i) = VIsOne1 (eval' e i)
  136. eval' e (IsOne2 i) = VIsOne2 (eval' e i)
  137. eval' _ ItIsOne = VItIsOne
  138. eval' e (Partial x y) = VPartial (eval' e x) (eval' e y)
  139. eval' e (PartialP x y) = VPartialP (eval' e x) (eval' e y)
  140. eval' e (System fs) = VSystem (Map.fromList $ map (\(x, y) -> (eval' e x, eval' e y)) $ Map.toList $ fs)
  141. eval' e (Sub a phi u) = VSub (eval' e a) (eval' e phi) (eval' e u)
  142. eval' e (Inc a phi u) = VInc (eval' e a) (eval' e phi) (eval' e u)
  143. eval' e (Ouc a phi u x) = outS (eval' e a) (eval' e phi) (eval' e u) (eval' e x)
  144. eval' e (Comp a phi u a0) = comp (eval' e a) (eval' e phi) (eval' e u) (eval' e a0)
  145. eval' e (GlueTy a phi tys f) = glueType (eval' e a) (eval' e phi) (eval' e tys) (eval' e f)
  146. eval' e (Glue a phi tys eqvs t x) = glueElem (eval' e a) (eval' e phi) (eval' e tys) (eval' e eqvs) (eval' e t) (eval' e x)
  147. eval' e (Unglue a phi tys f x) = unglue (eval' e a) (eval' e phi) (eval' e tys) (eval' e f) (eval' e x)
  148. vApp :: HasCallStack => Plicity -> Value -> Value -> Value
  149. vApp p (VLam p' k) arg
  150. | p == p' = clCont k arg
  151. | otherwise = error $ "wrong plicity " ++ show p ++ " vs " ++ show p' ++ " in app " ++ show (App p (quote (VLam p' k)) (quote arg))
  152. vApp p (VNe h sp) arg = VNe h (sp Seq.:|> PApp p arg)
  153. vApp p (VSystem fs) arg = VSystem (fmap (flip (vApp p) arg) fs)
  154. vApp _ x _ = error $ "can't apply " ++ show (prettyTm (quote x))
  155. (@@) :: HasCallStack => Value -> Value -> Value
  156. (@@) = vApp Ex
  157. infixl 9 @@
  158. vProj1 :: HasCallStack => Value -> Value
  159. vProj1 (VPair a _) = a
  160. vProj1 (VNe h sp) = VNe h (sp Seq.:|> PProj1)
  161. vProj1 (VSystem fs) = VSystem (fmap vProj1 fs)
  162. vProj1 x = error $ "can't proj1 " ++ show (prettyTm (quote x))
  163. vProj2 :: HasCallStack => Value -> Value
  164. vProj2 (VPair _ b) = b
  165. vProj2 (VNe h sp) = VNe h (sp Seq.:|> PProj2)
  166. vProj2 (VSystem fs) = VSystem (fmap vProj2 fs)
  167. vProj2 x = error $ "can't proj2 " ++ show (prettyTm (quote x))
  168. data NotEqual = NotEqual Value Value
  169. deriving (Show, Typeable, Exception)
  170. unify' :: HasCallStack => Value -> Value -> ElabM ()
  171. unify' topa topb = join $ go <$> forceIO topa <*> forceIO topb where
  172. go (VNe (HMeta mv) sp) rhs = solveMeta mv sp rhs
  173. go rhs (VNe (HMeta mv) sp) = solveMeta mv sp rhs
  174. go (VNe x a) (VNe x' a')
  175. | x == x', length a == length a' =
  176. traverse_ (uncurry unify'Spine) (Seq.zip a a')
  177. go lhs@(VNe _hd (_ Seq.:|> PIElim _l x y i)) rhs =
  178. case force i of
  179. VI0 -> unify' x rhs
  180. VI1 -> unify' y rhs
  181. _ -> case rhs of
  182. VSystem sys -> goSystem (flip unify') sys lhs
  183. _ -> fail
  184. go lhs rhs@(VNe _hd (_ Seq.:|> PIElim _l x y i)) =
  185. case force i of
  186. VI0 -> unify' lhs x
  187. VI1 -> unify' lhs y
  188. _ -> case lhs of
  189. VSystem sys -> goSystem unify' sys rhs
  190. _ -> fail
  191. go (VLam p (Closure _ k)) vl = do
  192. t <- VVar <$> newName
  193. unify' (k t) (vApp p vl t)
  194. go vl (VLam p (Closure _ k)) = do
  195. t <- VVar <$> newName
  196. unify' (vApp p vl t) (k t)
  197. go (VPair a b) vl = unify' a (vProj1 vl) *> unify' b (vProj2 vl)
  198. go vl (VPair a b) = unify' (vProj1 vl) a *> unify' (vProj2 vl) b
  199. go (VPi p d (Closure _ k)) (VPi p' d' (Closure _ k')) | p == p' = do
  200. t <- VVar <$> newName
  201. unify' d d'
  202. unify' (k t) (k' t)
  203. go (VSigma d (Closure _ k)) (VSigma d' (Closure _ k')) = do
  204. t <- VVar <$> newName
  205. unify' d d'
  206. unify' (k t) (k' t)
  207. go VType VType = pure ()
  208. go VTypeω VTypeω = pure ()
  209. go VI VI = pure ()
  210. go (VPath l x y) (VPath l' x' y') = do
  211. unify' l l'
  212. unify' x x'
  213. unify' y y'
  214. go (VLine l x y p) p' = do
  215. n <- VVar <$> newName
  216. unify (p @@ n) (ielim l x y p' n)
  217. go p' (VLine l x y p) = do
  218. n <- VVar <$> newName
  219. unify (ielim l x y p' n) (p @@ n)
  220. go (VIsOne x) (VIsOne y) = unify' x y
  221. -- IsOne is proof-irrelevant:
  222. go VItIsOne _ = pure ()
  223. go _ VItIsOne = pure ()
  224. go VIsOne1{} _ = pure ()
  225. go _ VIsOne1{} = pure ()
  226. go VIsOne2{} _ = pure ()
  227. go _ VIsOne2{} = pure ()
  228. go (VPartial phi r) (VPartial phi' r') = unify' phi phi' *> unify r r'
  229. go (VPartialP phi r) (VPartialP phi' r') = unify' phi phi' *> unify r r'
  230. go (VSub a phi u) (VSub a' phi' u') = traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u')]
  231. go (VInc a phi u) (VInc a' phi' u') = traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u')]
  232. go (VComp a phi u a0) (VComp a' phi' u' a0') =
  233. traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u'), (a0, a0')]
  234. go (VGlueTy _ VI1 u _0) rhs = unify' (u @@ VItIsOne) rhs
  235. go lhs (VGlueTy _ VI1 u _0) = unify' lhs (u @@ VItIsOne)
  236. go (VGlueTy a phi u a0) (VGlueTy a' phi' u' a0') =
  237. traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u'), (a0, a0')]
  238. go (VGlue a phi u a0 t x) (VGlue a' phi' u' a0' t' x') =
  239. traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u'), (a0, a0'), (t, t'), (x, x')]
  240. go (VSystem sys) rhs = goSystem unify' sys rhs
  241. go rhs (VSystem sys) = goSystem (flip unify') sys rhs
  242. go x y =
  243. case (toDnf x, toDnf y) of
  244. (Just xs, Just ys) -> unify'Formula xs ys
  245. _ -> fail
  246. goSystem :: (Value -> Value -> ElabM ()) -> Map.Map Value Value -> Value -> ElabM ()
  247. goSystem k sys rhs = do
  248. let rhs_q = quote rhs
  249. env <- ask
  250. for_ (Map.toList sys) $ \(f, i) -> do
  251. let i_q = quote i
  252. for (truthAssignments f (getEnv env)) $ \e ->
  253. k (eval' env{getEnv = e} i_q) (eval' env{getEnv = e} rhs_q)
  254. fail = throwElab $ NotEqual topa topb
  255. unify'Spine (PApp a v) (PApp a' v')
  256. | a == a' = unify' v v'
  257. unify'Spine PProj1 PProj1 = pure ()
  258. unify'Spine PProj2 PProj2 = pure ()
  259. unify'Spine (PIElim _ _ _ i) (PIElim _ _ _ j) = unify' i j
  260. unify'Spine (POuc a phi u) (POuc a' phi' u') =
  261. traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u')]
  262. unify'Spine _ _ = fail
  263. unify'Formula x y
  264. | compareDNFs x y = pure ()
  265. | otherwise = fail
  266. unify :: HasCallStack => Value -> Value -> ElabM ()
  267. unify a b = unify' a b `catchElab` \(_ :: NotEqual) -> liftIO $ throwIO (NotEqual a b)
  268. isConvertibleTo :: Value -> Value -> ElabM (Term -> Term)
  269. isConvertibleTo a b = isConvertibleTo (force a) (force b) where
  270. VPi Im d (Closure _v k) `isConvertibleTo` ty = do
  271. meta <- newMeta d
  272. cont <- k meta `isConvertibleTo` ty
  273. pure (\f -> cont (App Im f (quote meta)))
  274. VType `isConvertibleTo` VTypeω = pure id
  275. VPi p d (Closure _ k) `isConvertibleTo` VPi p' d' (Closure _ k') | p == p' = do
  276. wp <- d' `isConvertibleTo` d
  277. n <- newName
  278. wp_n <- eval (Lam Ex n (wp (Ref n)))
  279. wp' <- k (VVar n) `isConvertibleTo` k' (wp_n @@ VVar n)
  280. pure (\f -> Lam p n (wp' (App p f (wp (Ref n)))))
  281. isConvertibleTo a b = do
  282. unify' a b
  283. pure id
  284. newMeta :: Value -> ElabM Value
  285. newMeta _dom = do
  286. n <- newName
  287. c <- liftIO $ newIORef Nothing
  288. let m = MV (getNameText n) c
  289. env <- asks getEnv
  290. t <- for (Map.toList env) $ \(n, _) -> pure $
  291. case n of
  292. Bound{} -> Just (PApp Ex (VVar n))
  293. _ -> Nothing
  294. pure (VNe (HMeta m) (Seq.fromList (catMaybes t)))
  295. newName :: MonadIO m => m Name
  296. newName = liftIO $ do
  297. x <- atomicModifyIORef _nameCounter $ \x -> (x + 1, x + 1)
  298. pure (Bound (T.pack (show x)) x)
  299. _nameCounter :: IORef Int
  300. _nameCounter = unsafePerformIO $ newIORef 0
  301. {-# NOINLINE _nameCounter #-}
  302. solveMeta :: MV -> Seq Projection -> Value -> ElabM ()
  303. solveMeta m@(MV _ cell) sp rhs = do
  304. env <- ask
  305. names <- checkSpine Set.empty sp
  306. checkScope (Set.fromList names) rhs
  307. `withNote` hsep [prettyTm (quote (VNe (HMeta m) sp)), pretty '≡', prettyTm (quote rhs)]
  308. let tm = quote rhs
  309. lam = eval' env $ foldr (Lam Ex) tm names
  310. liftIO . atomicModifyIORef' cell $ \case
  311. Just _ -> error "filled cell in solvedMeta"
  312. Nothing -> (Just lam, ())
  313. checkScope :: Set Name -> Value -> ElabM ()
  314. checkScope scope (VNe h sp) =
  315. do
  316. case h of
  317. HVar v@Bound{} ->
  318. unless (v `Set.member` scope) . throwElab $
  319. NotInScope v
  320. HVar{} -> pure ()
  321. HMeta{} -> pure ()
  322. traverse_ checkProj sp
  323. where
  324. checkProj (PApp _ t) = checkScope scope t
  325. checkProj (PIElim l x y i) = traverse_ (checkScope scope) [l, x, y, i]
  326. checkProj (POuc a phi u) = traverse_ (checkScope scope) [a, phi, u]
  327. checkProj PProj1 = pure ()
  328. checkProj PProj2 = pure ()
  329. checkScope scope (VLam _ (Closure n k)) =
  330. checkScope (Set.insert n scope) (k (VVar n))
  331. checkScope scope (VPi _ d (Closure n k)) = do
  332. checkScope scope d
  333. checkScope (Set.insert n scope) (k (VVar n))
  334. checkScope scope (VSigma d (Closure n k)) = do
  335. checkScope scope d
  336. checkScope (Set.insert n scope) (k (VVar n))
  337. checkScope s (VPair a b) = traverse_ (checkScope s) [a, b]
  338. checkScope _ VType = pure ()
  339. checkScope _ VTypeω = pure ()
  340. checkScope _ VI = pure ()
  341. checkScope _ VI0 = pure ()
  342. checkScope _ VI1 = pure ()
  343. checkScope s (VIAnd x y) = traverse_ (checkScope s) [x, y]
  344. checkScope s (VIOr x y) = traverse_ (checkScope s) [x, y]
  345. checkScope s (VINot x) = checkScope s x
  346. checkScope s (VPath line a b) = traverse_ (checkScope s) [line, a, b]
  347. checkScope s (VLine _ _ _ line) = checkScope s line
  348. checkScope s (VIsOne x) = checkScope s x
  349. checkScope s (VIsOne1 x) = checkScope s x
  350. checkScope s (VIsOne2 x) = checkScope s x
  351. checkScope _ VItIsOne = pure ()
  352. checkScope s (VPartial x y) = traverse_ (checkScope s) [x, y]
  353. checkScope s (VPartialP x y) = traverse_ (checkScope s) [x, y]
  354. checkScope s (VSystem fs) =
  355. for_ (Map.toList fs) $ \(x, y) -> traverse_ (checkScope s) [x, y]
  356. checkScope s (VSub a b c) = traverse_ (checkScope s) [a, b, c]
  357. checkScope s (VInc a b c) = traverse_ (checkScope s) [a, b, c]
  358. checkScope s (VComp a phi u a0) = traverse_ (checkScope s) [a, phi, u, a0]
  359. checkScope s (VGlueTy a phi ty eq) = traverse_ (checkScope s) [a, phi, ty, eq]
  360. checkScope s (VGlue a phi ty eq inv x) = traverse_ (checkScope s) [a, phi, ty, eq, inv, x]
  361. checkScope s (VUnglue a phi ty eq vl) = traverse_ (checkScope s) [a, phi, ty, eq, vl]
  362. checkSpine :: Set Name -> Seq Projection -> ElabM [Name]
  363. checkSpine scope (PApp Ex (VVar n@Bound{}) Seq.:<| xs)
  364. | n `Set.member` scope = throwElab $ NonLinearSpine n
  365. | otherwise = (n:) <$> checkSpine scope xs
  366. checkSpine _ (p Seq.:<| _) = throwElab $ SpineProj p
  367. checkSpine _ Seq.Empty = pure []
  368. newtype NonLinearSpine = NonLinearSpine { getDupeName :: Name }
  369. deriving (Show, Typeable, Exception)
  370. newtype SpineProjection = SpineProj { getSpineProjection :: Projection }
  371. deriving (Show, Typeable, Exception)