|
|
- {-# LANGUAGE BlockArguments #-}
- {-# LANGUAGE TupleSections #-}
- {-# LANGUAGE DeriveAnyClass #-}
- {-# LANGUAGE ScopedTypeVariables #-}
- module Elab where
-
- import Control.Monad.Reader
- import Control.Exception
-
- import qualified Data.Map.Strict as Map
- import qualified Data.Set as Set
- import Data.Traversable
- import Data.Typeable
- import Data.Foldable
-
- import Elab.Eval.Formula (possible, truthAssignments)
- import Elab.WiredIn
- import Elab.Monad
- import Elab.Eval
-
- import qualified Presyntax.Presyntax as P
-
- import Prettyprinter
-
- import Syntax.Pretty
- import Syntax
- import Data.Map (Map)
- import Data.Text (Text)
-
- infer :: P.Expr -> ElabM (Term, NFType)
- infer (P.Span ex a b) = withSpan a b $ infer ex
-
- infer (P.Var t) = do
- name <- getNameFor t
- nft <- getNfType name
- pure (Ref name, nft)
-
- infer (P.App p f x) = do
- (f, f_ty) <- infer f
- porp <- isPiType p f_ty
- case porp of
- It'sProd d r w -> do
- x <- check x d
- x_nf <- eval x
- pure (App p (w f) x, r x_nf)
- It'sPath li le ri wp -> do
- x <- check x VI
- x_nf <- eval x
- pure (IElim (quote (fun li)) (quote le) (quote ri) (wp f) x, li x_nf)
- It'sPartial phi a w -> do
- x <- check x (VIsOne phi)
- pure (App P.Ex (w f) x, a)
- It'sPartialP phi a w -> do
- x <- check x (VIsOne phi)
- x_nf <- eval x
- pure (App P.Ex (w f) x, a @@ x_nf)
-
- infer (P.Proj1 x) = do
- (tm, ty) <- infer x
- (d, _, wp) <- isSigmaType ty
- pure (Proj1 (wp tm), d)
-
- infer (P.Proj2 x) = do
- (tm, ty) <- infer x
- tm_nf <- eval tm
- (_, r, wp) <- isSigmaType ty
- pure (Proj2 (wp tm), r (vProj1 tm_nf))
-
- infer exp = do
- t <- newMeta VType
- tm <- switch $ check exp t
- pure (tm, t)
-
- check :: P.Expr -> NFType -> ElabM Term
- check (P.Span ex a b) ty = withSpan a b $ check ex ty
-
- check (P.Lam p var body) (VPi p' dom (Closure _ rng)) | p == p' =
- assume (Bound var 0) dom $ \name ->
- Lam p name <$> check body (rng (VVar name))
-
- check tm (VPi P.Im dom (Closure var rng)) =
- assume var dom $ \name ->
- Lam P.Im name <$> check tm (rng (VVar name))
-
- check (P.Lam p v b) ty = do
- porp <- isPiType p =<< forceIO ty
- case porp of
- It'sProd d r wp ->
- assume (Bound v 0) d $ \name ->
- wp . Lam p name <$> check b (r (VVar name))
-
- It'sPath li le ri wp -> do
- tm <- assume (Bound v 0) VI $ \var ->
- Lam P.Ex var <$> check b (force (li (VVar var)))
-
- tm_nf <- eval tm
-
- unify (tm_nf @@ VI0) le
- `catchElab` (throwElab . WhenCheckingEndpoint le ri VI0)
-
- unify (tm_nf @@ VI1) ri
- `catchElab` (throwElab . WhenCheckingEndpoint le ri VI1)
-
- pure (wp (PathIntro (quote (fun li)) (quote le) (quote ri) tm))
-
- It'sPartial phi a wp ->
- assume (Bound v 0) (VIsOne phi) $ \var ->
- wp . Lam p var <$> check b a
-
- It'sPartialP phi a wp ->
- assume (Bound v 0) (VIsOne phi) $ \var ->
- wp . Lam p var <$> check b (a @@ VVar var)
-
- check (P.Pair a b) ty = do
- (d, r, wp) <- isSigmaType =<< forceIO ty
- a <- check a d
- a_nf <- eval a
- b <- check b (r a_nf)
- pure (wp (Pair a b))
-
- check (P.Pi p s d r) ty = do
- isSort ty
- d <- check d ty
- d_nf <- eval d
- assume (Bound s 0) d_nf \var -> do
- r <- check r ty
- pure (Pi p var d r)
-
- check (P.Sigma s d r) ty = do
- isSort ty
- d <- check d ty
- d_nf <- eval d
- assume (Bound s 0) d_nf \var -> do
- r <- check r ty
- pure (Sigma var d r)
-
- check (P.Let items body) ty = do
- checkLetItems mempty items \decs -> do
- body <- check body ty
- pure (Let decs body)
-
- check (P.LamSystem bs) ty = do
- (extent, dom) <- isPartialType ty
- let dom_q = quote dom
- eqns <- for (zip [(0 :: Int)..] bs) $ \(n, (formula, rhs)) -> do
- phi <- checkFormula (P.condF formula)
- rhses <-
- case P.condV formula of
- Just t -> assume (Bound t 0) (VIsOne phi) $ \var -> do
- env <- ask
- for (truthAssignments phi (getEnv env)) $ \e -> do
- let env' = env{ getEnv = e }
- (Just var,) <$> check rhs (eval' env' dom_q)
- Nothing -> do
- env <- ask
- for (truthAssignments phi (getEnv env)) $ \e -> do
- let env' = env{ getEnv = e }
- (Nothing,) <$> check rhs (eval' env' dom_q)
- pure (n, (phi, head rhses))
-
- unify extent (foldl ior VI0 (map (fst . snd) eqns))
-
- for_ eqns $ \(n, (formula, (binding, rhs))) -> do
- let
- k = case binding of
- Just v -> assume v (VIsOne formula) . const
- Nothing -> id
- k $ for_ eqns $ \(n', (formula', (binding, rhs'))) -> do
- let
- k = case binding of
- Just v -> assume v (VIsOne formula) . const
- Nothing -> id
- truth = possible mempty (iand formula formula')
- add [] = id
- add ((~(HVar x), True):xs) = redefine x VI VI1 . add xs
- add ((~(HVar x), False):xs) = redefine x VI VI0 . add xs
- k $ when ((n /= n') && fst truth) . add (Map.toList (snd truth)) $ do
- vl <- eval rhs
- vl' <- eval rhs'
- unify vl vl'
- `withNote` vsep [ pretty "These two cases must agree because they are both possible:"
- , indent 2 $ pretty '*' <+> prettyTm (quote formula) <+> operator (pretty "=>") <+> prettyTm rhs
- , indent 2 $ pretty '*' <+> prettyTm (quote formula') <+> operator (pretty "=>") <+> prettyTm rhs'
- ]
- `withNote` (pretty "Consider this face, where both are true:" <+> showFace (snd truth))
-
- name <- newName
- let
- mkB name (Just v, b) = App P.Ex (Lam P.Ex v b) (Ref name)
- mkB _ (Nothing, b) = b
- pure (Lam P.Ex name (System (Map.fromList (map (\(_, (x, y)) -> (quote x, mkB name y)) eqns))))
-
- check exp ty = do
- (tm, has) <- switch $ infer exp
- wp <- isConvertibleTo has ty
- pure (wp tm)
-
- checkLetItems :: Map Text (Maybe NFType) -> [P.LetItem] -> ([(Name, Term, Term)] -> ElabM a) -> ElabM a
- checkLetItems _ [] cont = cont []
- checkLetItems map (P.LetDecl v t:xs) cont = do
- t <- check t VTypeω
- t_nf <- eval t
- assume (Defined v 0) t_nf \_ ->
- checkLetItems (Map.insert v (Just t_nf) map) xs cont
-
- checkLetItems map (P.LetBind name rhs:xs) cont = do
- case Map.lookup name map of
- Nothing -> do
- (tm, ty) <- infer rhs
- tm_nf <- eval tm
- define (Defined name 0) ty tm_nf \name' ->
- checkLetItems map xs \xs ->
- cont ((name', quote ty, tm):xs)
- Just Nothing -> throwElab $ Redefinition (Defined name 0)
- Just (Just ty_nf) -> do
- rhs <- check rhs ty_nf
- rhs_nf <- eval rhs
- define (Defined name 0) ty_nf rhs_nf \name' ->
- checkLetItems (Map.insert name Nothing map) xs \xs ->
- cont ((name', quote ty_nf, rhs):xs)
-
- checkFormula :: P.Formula -> ElabM Value
- checkFormula P.FTop = pure VI1
- checkFormula P.FBot = pure VI0
- checkFormula (P.FAnd x y) = iand <$> checkFormula x <*> checkFormula y
- checkFormula (P.FOr x y) = ior <$> checkFormula x <*> checkFormula y
- checkFormula (P.FIs0 x) = do
- nm <- getNameFor x
- ty <- getNfType nm
- unify ty VI
- pure (inot (VVar nm))
- checkFormula (P.FIs1 x) = do
- nm <- getNameFor x
- ty <- getNfType nm
- unify ty VI
- pure (VVar nm)
-
- isSort :: NFType -> ElabM ()
- isSort t = isSort (force t) where
- isSort VType = pure ()
- isSort VTypeω = pure ()
- isSort vt@(VNe HMeta{} _) = unify vt VType
- isSort vt = throwElab $ NotEqual vt VType
-
- data ProdOrPath
- = It'sProd { prodDmn :: NFType
- , prodRng :: NFType -> NFType
- , prodWrap :: Term -> Term
- }
- | It'sPath { pathLine :: NFType -> NFType
- , pathLeft :: Value
- , pathRight :: Value
- , pathWrap :: Term -> Term
- }
- | It'sPartial { partialExtent :: NFEndp
- , partialDomain :: Value
- , partialWrap :: Term -> Term
- }
- | It'sPartialP { partialExtent :: NFEndp
- , partialDomain :: Value
- , partialWrap :: Term -> Term
- }
-
- isPiType :: P.Plicity -> NFType -> ElabM ProdOrPath
- isPiType p x = isPiType p (force x) where
- isPiType p (VPi p' d (Closure _ k)) | p == p' = pure (It'sProd d k id)
- isPiType P.Ex (VPath li le ri) = pure (It'sPath (li @@) le ri id)
- isPiType P.Ex (VPartial phi a) = pure (It'sPartial phi a id)
- isPiType P.Ex (VPartialP phi a) = pure (It'sPartialP phi a id)
-
- isPiType P.Ex (VPi P.Im d (Closure _ k)) = do
- meta <- newMeta d
- porp <- isPiType P.Ex (k meta)
- pure $ case porp of
- It'sProd d r w -> It'sProd d r (\f -> w (App P.Im f (quote meta)))
- It'sPath l x y w -> It'sPath l x y (\f -> w (App P.Im f (quote meta)))
- It'sPartial phi a w -> It'sPartial phi a (\f -> w (App P.Im f (quote meta)))
- It'sPartialP phi a w -> It'sPartialP phi a (\f -> w (App P.Im f (quote meta)))
- isPiType p t = do
- dom <- newMeta VType
- name <- newName
- assume name dom $ \name -> do
- rng <- newMeta VType
- wp <- isConvertibleTo t (VPi p dom (Closure name (const rng)))
- pure (It'sProd dom (const rng) wp)
-
- isSigmaType :: NFType -> ElabM (Value, NFType -> NFType, Term -> Term)
- isSigmaType t = isSigmaType (force t) where
- isSigmaType (VSigma d (Closure _ k)) = pure (d, k, id)
- isSigmaType t = do
- dom <- newMeta VType
- name <- newName
- assume name dom $ \name -> do
- rng <- newMeta VType
- wp <- isConvertibleTo t (VSigma dom (Closure name (const rng)))
- pure (dom, const rng, wp)
-
- isPartialType :: NFType -> ElabM (NFEndp, Value)
- isPartialType t = isPartialType (force t) where
- isPartialType (VPartial phi a) = pure (phi, a)
- isPartialType (VPartialP phi a) = pure (phi, a)
- isPartialType t = do
- phi <- newMeta VI
- dom <- newMeta (VPartial phi VType)
- unify t (VPartial phi dom)
- pure (phi, dom)
-
- checkStatement :: P.Statement -> ElabM a -> ElabM a
- checkStatement (P.SpanSt s a b) k = withSpan a b $ checkStatement s k
-
- checkStatement (P.Decl name ty) k = do
- ty <- check ty VTypeω
- ty_nf <- eval ty
- assumes (flip Defined 0 <$> name) ty_nf (const k)
-
- checkStatement (P.Postulate []) k = k
- checkStatement (P.Postulate ((name, ty):xs)) k = do
- ty <- check ty VTypeω
- ty_nf <- eval ty
- assume (Defined name 0) ty_nf \name ->
- local (\e -> e { definedNames = Set.insert name (definedNames e) }) (checkStatement (P.Postulate xs) k)
-
- checkStatement (P.Defn name rhs) k = do
- ty <- asks (Map.lookup name . nameMap)
- case ty of
- Nothing -> do
- (tm, ty) <- infer rhs
- tm_nf <- eval tm
- define (Defined name 0) ty tm_nf (const k)
- Just nm -> do
- ty_nf <- getNfType nm
- t <- asks (Set.member nm . definedNames)
- when t $ throwElab (Redefinition (Defined name 0))
-
- rhs <- check rhs ty_nf
- rhs_nf <- eval rhs
- define (Defined name 0) ty_nf rhs_nf $ \name ->
- local (\e -> e { definedNames = Set.insert name (definedNames e) }) k
-
- checkStatement (P.Builtin winame var) k = do
- wi <-
- case Map.lookup winame wiredInNames of
- Just wi -> pure wi
- _ -> throwElab $ NoSuchPrimitive winame
-
- let
- check = do
- nm <- getNameFor var
- ty <- getNfType nm
- unify ty (wiType wi)
- `withNote` hsep [ pretty "Previous definition of", pretty nm, pretty "here" ]
- `seeAlso` nm
-
- env <- ask
- liftIO $
- runElab check env `catch` \(_ :: NotInScope) -> pure ()
-
- define (Defined var 0) (wiType wi) (wiValue wi) $ \name ->
- local (\e -> e { definedNames = Set.insert name (definedNames e) }) k
-
- checkStatement (P.ReplNf e) k = do
- (e, _) <- infer e
- e_nf <- eval e
- h <- asks commHook
- liftIO (h e_nf)
- k
-
- checkStatement (P.ReplTy e) k = do
- (_, ty) <- infer e
- h <- asks commHook
- liftIO (h ty)
- k
-
- checkProgram :: [P.Statement] -> ElabM a -> ElabM a
- checkProgram [] k = k
- checkProgram (st:sts) k = checkStatement st $ checkProgram sts k
-
- newtype Redefinition = Redefinition { getRedefName :: Name }
- deriving (Show, Typeable, Exception)
-
- data WhenCheckingEndpoint = WhenCheckingEndpoint { leftEndp :: Value, rightEndp :: Value, whichIsWrong :: NFEndp, exc :: SomeException }
- deriving (Show, Typeable, Exception)
|