You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

452 lines
14 KiB

module M = import "data/map.ml"
module G = import "./lib/graph.ml"
open import "./lang.ml"
open import "amulet/exception.ml"
open import "prelude.ml"
type tc_tyvar 'a = Tv of {
name : string, level : int, var : ref (option 'a)
}
instance eq (tc_tyvar 'a) begin
let Tv x == Tv y = x.name == y.name
end
instance ord (tc_tyvar 'a) begin
let Tv x `compare` Tv y = x.name `compare` y.name
end
type tc_kappa =
| K_arr of tc_kappa * tc_kappa
| K_star
| K_var of tc_tyvar tc_kappa
type tc_rho =
| T_uvar of tc_tyvar tc_rho
| T_var of string
| T_con of string
| T_app of tc_rho * tc_rho
| T_arr of tc_rho * tc_rho
instance show tc_rho begin
let show =
let rec show_arg = function
| T_app _ as x -> "(" ^ go x ^ ")"
| x -> show_domain x
and show_domain = function
| T_arr _ as x -> "(" ^ go x ^ ")"
| x -> go x
and go = function
| T_uvar (Tv n) ->
match !n.var with
| Some t -> go t
| None -> n.name
| T_var v -> v
| T_con v -> v
| T_app (f, x) -> go f ^ " " ^ show_arg x
| T_arr (a, b) -> show_domain a ^ " -> " ^ go b
go
end
instance show tc_kappa begin
let show x =
let rec go = function
| K_star -> "*"
| K_var (Tv v) -> "?" ^ v.name
| K_arr (a, b) -> show_domain a ^ " -> " ^ go b
and show_domain = function
| K_arr _ as x -> "(" ^ show x ^ ")"
| x -> go x
go x
end
type tc_sigma =
Forall of {
vars : list string,
body : tc_rho
}
let rec free_unif_vars = function
| T_uvar v -> S.singleton v
| T_var _ -> S.empty
| T_con _ -> S.empty
| T_app (f, x) -> S.union (free_unif_vars f) (free_unif_vars x)
| T_arr (a, b) -> S.union (free_unif_vars a) (free_unif_vars b)
let new_name =
let c = ref 0
fun () ->
c := !c + 1
"alpha" ^ show !c
let new_tcvar level =
let name = new_name ()
Tv { name, level, var = ref None }
let rec zonk = function
| T_uvar (Tv r) as rho ->
match !r.var with
| Some rho -> zonk rho
| None -> rho
| T_var v -> T_var v
| T_con v -> T_con v
| T_app (f, x) -> T_app (zonk f, zonk x)
| T_arr (f, x) -> T_arr (zonk f, zonk x)
let empty (Tv r) =
match !r.var with
| None -> true
| Some (T_uvar (Tv r')) -> r.name == r'.name
| _ -> false
let generalise level rho =
let rho = zonk rho
let vars =
free_unif_vars rho
|> S.filter (fun (Tv r) -> r.level > level && empty (Tv r))
|> S.members
flip iter vars @@ fun (Tv r) ->
r.var := Some (T_var r.name)
Forall { vars = map (fun (Tv r) -> r.name) vars, body = zonk rho }
let rec unify a b =
let solve r s =
match !r.var with
| Some t -> unify t s
| None -> r.var := Some s
match a, b with
| T_uvar (Tv r), b -> solve r b
| a, T_uvar (Tv r) -> solve r a
| T_var a, T_var b when a == b -> ()
| T_con a, T_con b when a == b -> ()
| T_app (f, x), T_app (f', x') ->
unify f f'
unify x x'
| T_arr (a, b), T_arr (a', b') ->
unify a a'
unify b b'
| a, b -> error @@ "Types " ^ show a ^ " and " ^ show b ^ " are not equal"
let rec unify_kappa a b =
let solve r s =
match !r.var with
| Some t -> unify_kappa t s
| None -> r.var := Some s
match a, b with
| K_var (Tv r), b -> solve r b
| a, K_var (Tv r) -> solve r a
| K_star, K_star -> ()
| K_arr (a, b), K_arr (a', b') ->
unify_kappa a a'
unify_kappa b b'
| a, b -> error @@ "Kinds " ^ show a ^ " and " ^ show b ^ " are not equal"
type scheme 'a = Poly of tc_sigma | Mono of 'a
instance show 'a => show (scheme 'a) begin
let show = function
| Poly (Forall {vars,body}) ->
foldl (fun s i -> s ^ " " ^ i) "forall" vars ^ ". " ^ show body
| Mono x -> show x
end
let mono m = function
| Mono x -> x
| Poly _ -> error @@ "Unexpected polytype " ^ m
let get_scope map var =
match M.lookup var map with
| Some v -> v
| None -> error @@ "Name not in scope: " ^ var
let is_function_kind level tau =
match tau with
| K_arr (a, b) -> (a, b)
| _ ->
let a = new_tcvar level |> K_var
let b = new_tcvar level |> K_var
unify_kappa tau (K_arr (a, b))
(a, b)
let rec infer_kind scope = function
| Tyvar v ->
let kappa = get_scope scope v |> mono "(kinds aren't ever polymorphic)"
(T_var v, kappa)
| Tycon v ->
let kappa = get_scope scope v |> mono "(kinds aren't ever polymorphic)"
(T_con v, kappa)
| Tyapp (f, x) ->
let (f, k_f) = infer_kind scope f
let (x, k_x) = infer_kind scope x
let (domain, result) = is_function_kind 0 k_f
unify_kappa domain k_x
(T_app (f, x), result)
| Tyarr (a, b) ->
let a = check_is_type scope a
let b = check_is_type scope b
(T_arr (a, b), K_star)
| Tytup [] -> (T_con "Unit#", K_star)
| _ -> error "Tuple types not supported"
and check_is_type scope t =
let (t, k) = infer_kind scope t
unify_kappa k K_star
t
let rec default_to_star = function
| K_var (Tv r) ->
match !r.var with
| Some k -> default_to_star k
| None -> K_star
| K_star -> K_star
| K_arr (a, b) -> K_arr (default_to_star a, default_to_star b)
type dt_info <-
{ name : string, d_args : list string, c_args : list tc_rho, c_ret : tc_rho }
let mk_con_info (d_name : string) (d_args : list string) : list (string * list tc_rho) -> list dt_info =
let go (name, args) =
{ name, c_args = args, d_args, c_ret = foldl (fun f x -> T_app (f, T_var x)) (T_con d_name) d_args }
map go
let infer_data_group_kind scope (group : list _) =
let init_kind (group, names) (name, args, constr) =
let args =
args |> map (fun v -> (v, new_tcvar 0 |> K_var |> Mono))
let kind = foldl (fun t (_, r) -> K_arr (t, mono "" r)) K_star args
let scope = M.from_list args
((name, kind, constr, scope, args) :: group, M.insert name (Mono kind) names)
let (group, scope') = foldl init_kind ([], M.empty) group
let scope = M.union scope scope'
let group : list (string * tc_kappa * list string * list (string * list tc_rho)) =
flip map group @@ fun (name, kind, constrs, args, args') ->
let scope = M.union scope args
constrs
|> map (fun (Constr (name, args)) -> (name, map (check_is_type scope) args))
|> (name,kind,[x|with (x,_)<-args'],)
flip map group @@ fun (name, kind, args, constrs) ->
(name, default_to_star kind, constrs, mk_con_info name args constrs)
let rec subst_vars f = function
| T_var v as t ->
match f v with
| None -> t
| Some t -> t
| T_uvar (Tv v) as t ->
match !v.var with
| Some t -> subst_vars f t
| None -> t
| T_con v -> T_con v
| T_app (a, b) -> T_app (subst_vars f a, subst_vars f b)
| T_arr (a, b) -> T_arr (subst_vars f a, subst_vars f b)
let instantiate level (Forall { vars, body }) =
let vars =
vars
|> map (fun v -> (v, new_tcvar level |> T_uvar))
|> M.from_list
subst_vars (flip M.lookup vars) body
let lookup_ty level scope v =
get_scope scope v |> function
| Mono t -> t
| Poly s -> instantiate level s
let is_function_type level tau =
match tau with
| T_arr (a, b) -> (a, b)
| _ ->
let a = new_tcvar level |> T_uvar
let b = new_tcvar level |> T_uvar
unify tau (T_arr (a, b))
(a, b)
(* TODO: Rank-N types *)
let is_subtype = unify
let rec infer dt_info level scope = function
| Ref v -> lookup_ty level scope v |> (Ref v,)
| App (f, x) ->
let (f, arg, res) =
infer dt_info level scope f
|> second (is_function_type level)
let x = check dt_info level scope arg x
(App (f, x), res)
| Lit i -> (Lit i, T_con "Int")
| Let (bindings, body) ->
let (bindings, scope') =
infer_binding_group dt_info level scope bindings
let (body, body_t) = infer dt_info level (scope `M.union` map force scope') body
(Let (bindings, body), body_t)
| x ->
let t = new_tcvar level |> T_uvar
let x = check dt_info level scope t x
(x, t)
and check dt_info level scope wanted = function
| Lam (arg, body) ->
let (arg_t, body_t) = is_function_type level wanted
let body =
(* TODO: Rank-N types *)
check dt_info level (M.insert arg (Mono arg_t) scope) body_t body
Lam (arg, body)
| Case (_, []) -> error "Empty case"
| Case (scrutinee, Cons ((con, _, _), _) as patterns) ->
let data =
match M.lookup con dt_info with
| Some data -> data
| None -> error @@ "Constructor " ^ con ^ " doesn't belong to a type"
let (scrutinee, scrut_t) = infer dt_info level scope scrutinee
let go_arm {name, d_args, c_args, c_ret} (con, args, expr) =
if name <> con then
error @@ "Constructors out of order: expected this pattern to match " ^ name
else ()
if length c_args <> length args then
error @@ "Constructor "
^ con ^ " has "
^ show (length c_args)
^ " but is being matched against with " ^ show (length args)
^ " variables"
else ()
let d_args =
d_args
|> map (fun v -> (v, new_tcvar level |> T_uvar))
|> M.from_list
let c_args = map (Mono # subst_vars (flip M.lookup d_args)) c_args
let c_ret = subst_vars (flip M.lookup d_args) c_ret
unify c_ret scrut_t
let scope' = M.from_list (zip args c_args) `M.union` scope
(con, args, check dt_info level scope' wanted expr)
Case (scrutinee, zip_with go_arm data patterns)
| x ->
let (x, t) = infer dt_info level scope x
is_subtype t wanted
x
and infer_binding_group dt_info level (scope : M.t string _) bindings : _ * M.t string _ =
let inner = level + 1
let initial_types =
bindings
|> map (fun (name, _) -> (name, new_tcvar inner |> T_uvar |> Mono))
|> M.from_list
let initial_types = initial_types |> M.union scope
let go_binding (bindings : list _, scope' : M.t _ _) (name : string, body : expr) =
let (body, body_ty) =
(fun () -> infer dt_info inner initial_types body)
`catch` fun (e : some exception) ->
error (describe_exception e ^ "\nwhen type checking " ^ name)
M.lookup name scope
|> function
| Some (Mono t) -> unify t body_ty
| _ -> ()
(
(name, body) :: bindings,
M.insert name (lazy (generalise level body_ty |> Poly)) scope'
)
foldl go_binding ([], M.empty) bindings
let dependency_graph defs =
let rec free_vars_of_cons t m (Constr (name, args)) =
let cons =
foldl (fun s t -> S.union s (free_cons t)) (S.singleton t)
args
M.insert name cons m
let define n x m =
M.alter (function
| Some _ -> error @@ "Redefinition of value " ^ n
| None -> Some x)
n m
let go (graph, defs) = function
| Foreign (Fimport { var }) as x ->
(M.insert var S.empty graph, define var x defs)
| Decl (name, args, expr) as x ->
let fvs =
free_vars expr
|> flip S.difference (S.from_list args)
|> S.delete name
(M.insert name fvs graph, define name x defs)
| Data (name, _, cons) as x ->
M.union graph (foldl (free_vars_of_cons name) M.empty cons)
|> M.insert name S.empty
|> (, define name x defs)
let (graph, defs) = foldl go (M.empty, M.empty) defs
(G.groups_of_sccs graph, defs)
let mk_lam args body = foldr (curry Lam) body args
let rec unlambda = function
| Lam (v, x) ->
let (args, x) = unlambda x
(v :: args, x)
| e -> ([], e)
let rec replicate n x =
if n <= 0 then
[]
else
x :: replicate (n - 1) x
let rec add_missing_vars scope = function
| Tyvar v ->
match M.lookup v scope with
| Some _ -> scope
| None ->
let k = new_tcvar 0 |> K_var
M.insert v (Mono k) scope
| Tycon _ -> scope
| Tyapp (a, b) -> add_missing_vars (add_missing_vars scope b) a
| Tyarr (a, b) -> add_missing_vars (add_missing_vars scope b) a
| Tytup xs -> foldl add_missing_vars scope xs
let tc_program (prog : list decl) =
let (plan, defs) = dependency_graph prog
let tc_one (dt_info, val_scope, ty_scope, out) group =
let defs = [ x | with name <- S.members group, with Some x <- [M.lookup name defs] ]
match defs with
| [] -> (dt_info, val_scope, ty_scope, defs)
| [Foreign (Fimport {var, ftype}) as def] ->
let ty_scope' = add_missing_vars M.empty ftype
let t = check_is_type (M.union ty_scope' ty_scope) ftype
(dt_info, M.insert var (Forall { vars = M.keys ty_scope', body = t } |> Poly) val_scope, ty_scope, def :: out)
| Cons (Foreign (Fimport {var}), _) ->
error @@ "Foreign definition " ^ var ^ " is part of a group. How?"
| Cons (Decl (name, args, body), ds) ->
let bindings =
(name, mk_lam args body)
:: [ (name, mk_lam args body) | with Decl (name, args, body) <- ds ]
let (bindings, scope') = infer_binding_group dt_info -1 val_scope bindings
let decs =
[ Decl (name, unlambda expr) | with (name, expr) <- bindings ]
(dt_info, M.union (map force scope') val_scope, ty_scope, decs ++ defs)
| Cons (Data d, ds) ->
let datas = d :: [ d | with Data d <- ds ]
let r = infer_data_group_kind ty_scope datas
let fix_constr (name, rhos : list tc_rho) =
Constr (name, replicate (length rhos) (Tycon "#"))
let rec go dt ty (vl : M.t string (scheme tc_rho)) ds = function
| [] -> (dt, vl, ty, reverse ds ++ out)
| Cons ((name, kind, constrs, info : list dt_info), rest) ->
go
(foldl (fun i {name} -> M.insert name info i) dt info)
(M.insert name (Mono kind) ty)
(foldl
(fun s {name,d_args,c_args,c_ret} ->
M.insert name (Forall { vars = d_args, body = foldr (curry T_arr) c_ret c_args} |> Poly) s)
vl info)
(Data (name, [], fix_constr <$> constrs) :: ds)
rest
go dt_info ty_scope val_scope [] r
let (_, _, _, p) = foldl tc_one (M.empty, M.empty, M.empty, []) plan
p