You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

240 lines
6.8 KiB

module M = import "data/map.ml"
module S = import "data/set.ml"
open import "prelude.ml"
open import "./lang.ml"
open import "./lib/monads.ml"
type addr =
| Combinator of string
| Local of int
| Arg of int
| Int of int
type gm_code =
| Push of addr
| Update of int
| Pop of int
| Slide of int
| Alloc of int
| Unwind
| Mkap
| Add | Sub | Mul | Div | Eval
| Iszero of list gm_code * list gm_code
| Pack of int * int
| Casejump of list (int * list gm_code)
instance show gm_code begin
let show = function
| Mkap -> "Mkap"
| Unwind -> "Unwind"
| Push (Combinator k) -> "Push " ^ k
| Push (Arg i) -> "Pusharg " ^ show i
| Push (Local i) -> "Pushlocal " ^ show i
| Push (Int i) -> "Pushint " ^ show i
| Update n -> "Update " ^ show n
| Pop n -> "Pop " ^ show n
| Slide n -> "Slide " ^ show n
| Alloc n -> "Alloc " ^ show n
| Add -> "Add"
| Mul -> "Mul"
| Sub -> "Sub"
| Div -> "Div"
| Eval -> "Eval"
| Pack (arity, tag) -> "Pack{" ^ show arity ^ "," ^ show tag ^ "}"
| Casejump xs -> "Casejump " ^ show xs
| Iszero xs -> "Iszero " ^ show xs
end
type program_item =
| Sc of string * int * list gm_code
| Fd of fdecl
instance show program_item begin
let show = function
| Sc p -> show p
| Fd _ -> "<foreign item>"
end
let rec lambda_lift = function
| Ref v -> pure (Ref v)
| Lit v -> pure (Lit v)
| App (f, x) -> (| app (lambda_lift f) (lambda_lift x) |)
| Lam (v, x) ->
let! body = lambda_lift x
let! (i, defs, known_sc) = get
let vars =
x |> free_vars
|> S.delete v
|> flip S.difference known_sc
|> S.members
let def = ("Lam" ^ show i, vars ++ [v], body)
let app = foldl (fun f -> app f # Ref) (Ref ("Lam" ^ show i)) vars
put (i + 1, Decl def :: defs, known_sc)
|> map (const app)
| Case (sc, alts) ->
let! sc = lambda_lift sc
let! alts = traverse (fun (c, args, e) -> (c,args,) <$> lambda_lift e) alts
let case = Case (sc, alts)
let! (i, defs, known_sc) = get
let vars =
case
|> free_vars
|> flip S.difference known_sc
|> S.members
let def = ("Lam" ^ show i, vars, case)
let app = foldl (fun f -> app f # Ref) (Ref ("Lam" ^ show i)) vars
put (i + 1, Decl def :: defs, known_sc)
|> map (const app)
| Let (vs, e) ->
let! vs = flip traverse vs @@ fun (v, e) ->
(v,) <$> lambda_lift e
let! e = lambda_lift e
pure (Let (vs, e))
let rec eta_contract = function
| Decl (n, a, e) as dec ->
match a, e with
| [], _ -> dec
| xs, App (f, Ref v) ->
if v == last xs && not (S.member v (free_vars f)) then
eta_contract (Decl (n, init a, f))
else
dec
| _, _ -> dec
| Data c -> Data c
| Foreign i -> Foreign i
let rec lambda_lift_sc = function
| Decl (n, a, e) ->
match e with
| Lam (v, e) -> lambda_lift_sc (Decl (n, a ++ [v], e))
| _ ->
let! e = lambda_lift e
let! _ = modify (fun (a, b, s) -> (a, b, S.insert n s))
pure (Decl (n, a, e))
| Data c -> Data c |> pure
| Foreign (Fimport { var } as i) ->
let! _ = modify (second (second (S.insert var)))
Foreign i |> pure
type dlist 'a <- list 'a -> list 'a
let cg_prim (Fimport { var, fent }) =
let prim_math_op x =
[ Push (Arg 0), Eval, Push (Arg 2), Eval, x, Update 2, Pop 2, Unwind ]
let prim_equality =
[ Push (Arg 0), Eval (* x, arg0, arg1, arg2, arg3 *)
, Push (Arg 2), Eval (* y, x, arg0, arg1, arg2, arg3 *)
, Sub (* y - x, arg0, arg1, arg2, arg3 *)
, Iszero ([ Push (Arg 3) ], [ Push (Arg 4) ])
, Update 4, Pop 4, Unwind ]
match fent with
| "add" -> (Sc (var, 2, prim_math_op Add), Add)
| "sub" -> (Sc (var, 2, prim_math_op Sub), Sub)
| "mul" -> (Sc (var, 2, prim_math_op Mul), Mul)
| "div" -> (Sc (var, 2, prim_math_op Div), Div)
| "equ" -> (Sc (var, 4, prim_equality), Unwind)
| "seq" -> (Sc (var, 2, [ Push (Arg 0), Eval, Update 0, Push (Arg 2), Update 2, Pop 2, Unwind]), Eval)
| e -> error @@ "No such primitive " ^ e
type slot = As of int | Ls of int
let offs n = function
| As x -> As (x + n)
| Ls x -> Ls (x + n)
let incr = offs 1
let rec compile (env : M.t string slot) = function
| Ref v ->
match M.lookup v env with
| Some (As i) -> (Push (Arg i) ::)
| Some (Ls i) -> (Push (Local i) ::)
| None -> (Push (Combinator v) ::)
| App (f, x) ->
let f = compile env f
let x = compile (map incr env) x
f # x # (Mkap ::)
| Lam _ ->
error "Can not compile lambda expression, did you forget to lift?"
| Case (sc, alts) ->
let rec go_alts = function
| [] -> []
| Cons ((_, args, exp), rest) ->
let c_arity = length args
let env =
args
|> flip zip [Ls k | with k <- [c_arity - 1, c_arity - 2 .. 0]]
|> M.from_list
|> M.union (offs (c_arity + 1) <$> env)
(c_arity, compile env exp [Slide c_arity]) :: go_alts rest
compile env sc # (Eval ::) # (Casejump (go_alts alts) ::)
| Lit i -> (Push (Int i) ::)
| Let (vs, e) ->
let n = length vs
let env =
vs
|> map (fun (x, _) -> x)
|> flip zip [Ls x | with x <- [n - 1, n - 2 .. 0]]
|> M.from_list
|> M.union (offs n <$> env)
let defs = zip [1..n] vs
let rec go : list (int * string * expr) -> dlist gm_code = function
| [] -> id
| Cons ((k, (_, exp)), rest) ->
compile env exp # (Update (n - k) ::) # go rest
(Alloc n ::) # go defs # compile env e # (Slide n ::)
let supercomb (_, args, exp) =
let env = M.from_list (zip args [0..length args])
let k = compile (M.from_list (zip args (As <$> [0..length args]))) exp
k [Update (length env), Pop (length env), Unwind]
let compile_cons =
let rec go i = function
| [] -> []
| Cons (Constr (n, args), rest) ->
let arity = length args
let rec pushargs i =
if i < arity then
Push (Arg (2 * i)) :: pushargs (i + 1)
else
[]
Sc (n, arity, pushargs 0 ++ [ Pack (arity, i), Update (2 * arity), Pop (2 * arity), Unwind ])
:: go (i + 1) rest
go 0
let program decs =
let (decs, (_, lams, _)) =
run_state (traverse (lambda_lift_sc # eta_contract) decs)
(0, [], S.empty)
let define nm k =
let! x = get
if nm `S.member` x then
pure []
else
let! _ = modify (S.insert nm)
k
let go =
flip traverse (lams ++ decs) @@ function
| Decl ((nm, args, _) as sc) ->
define nm (
let code = supercomb sc
[Sc (nm, length args, code)] |> pure
)
| Data (_, _, cs) -> pure (compile_cons cs)
| Foreign (Fimport { cc = Prim, var } as fi) ->
define var (
let (code, _) = cg_prim fi
pure [code]
)
| Foreign f -> pure [Fd f]
let (out, _) = run_state go S.empty
join out