module M = import "data/map.ml" module S = import "data/set.ml" open import "prelude.ml" open import "./lang.ml" open import "./lib/monads.ml" type addr = | Combinator of string | Local of int | Arg of int | Int of int type gm_code = | Push of addr | Update of int | Pop of int | Slide of int | Alloc of int | Unwind | Mkap | Add | Sub | Mul | Div | Eval | Iszero of list gm_code * list gm_code | Pack of int * int | Casejump of list (int * list gm_code) instance show gm_code begin let show = function | Mkap -> "Mkap" | Unwind -> "Unwind" | Push (Combinator k) -> "Push " ^ k | Push (Arg i) -> "Pusharg " ^ show i | Push (Local i) -> "Pushlocal " ^ show i | Push (Int i) -> "Pushint " ^ show i | Update n -> "Update " ^ show n | Pop n -> "Pop " ^ show n | Slide n -> "Slide " ^ show n | Alloc n -> "Alloc " ^ show n | Add -> "Add" | Mul -> "Mul" | Sub -> "Sub" | Div -> "Div" | Eval -> "Eval" | Pack (arity, tag) -> "Pack{" ^ show arity ^ "," ^ show tag ^ "}" | Casejump xs -> "Casejump " ^ show xs | Iszero xs -> "Iszero " ^ show xs end type program_item = | Sc of string * int * list gm_code | Fd of fdecl instance show program_item begin let show = function | Sc p -> show p | Fd _ -> "" end let rec lambda_lift = function | Ref v -> pure (Ref v) | Lit v -> pure (Lit v) | App (f, x) -> (| app (lambda_lift f) (lambda_lift x) |) | Lam (v, x) -> let! body = lambda_lift x let! (i, defs, known_sc) = get let vars = x |> free_vars |> S.delete v |> flip S.difference known_sc |> S.members let def = ("Lam" ^ show i, vars ++ [v], body) let app = foldl (fun f -> app f # Ref) (Ref ("Lam" ^ show i)) vars put (i + 1, Decl def :: defs, known_sc) |> map (const app) | Case (sc, alts) -> let! sc = lambda_lift sc let! alts = traverse (fun (c, args, e) -> (c,args,) <$> lambda_lift e) alts let case = Case (sc, alts) let! (i, defs, known_sc) = get let vars = case |> free_vars |> flip S.difference known_sc |> S.members let def = ("Lam" ^ show i, vars, case) let app = foldl (fun f -> app f # Ref) (Ref ("Lam" ^ show i)) vars put (i + 1, Decl def :: defs, known_sc) |> map (const app) | Let (vs, e) -> let! vs = flip traverse vs @@ fun (v, e) -> (v,) <$> lambda_lift e let! e = lambda_lift e pure (Let (vs, e)) let rec eta_contract = function | Decl (n, a, e) as dec -> match a, e with | [], _ -> dec | xs, App (f, Ref v) -> if v == last xs && not (S.member v (free_vars f)) then eta_contract (Decl (n, init a, f)) else dec | _, _ -> dec | Data c -> Data c | Foreign i -> Foreign i let rec lambda_lift_sc = function | Decl (n, a, e) -> match e with | Lam (v, e) -> lambda_lift_sc (Decl (n, a ++ [v], e)) | _ -> let! e = lambda_lift e let! _ = modify (fun (a, b, s) -> (a, b, S.insert n s)) pure (Decl (n, a, e)) | Data c -> Data c |> pure | Foreign (Fimport { var } as i) -> let! _ = modify (second (second (S.insert var))) Foreign i |> pure type dlist 'a <- list 'a -> list 'a let cg_prim (Fimport { var, fent }) = let prim_math_op x = [ Push (Arg 0), Eval, Push (Arg 2), Eval, x, Update 2, Pop 2, Unwind ] let prim_equality = [ Push (Arg 0), Eval (* x, arg0, arg1, arg2, arg3 *) , Push (Arg 2), Eval (* y, x, arg0, arg1, arg2, arg3 *) , Sub (* y - x, arg0, arg1, arg2, arg3 *) , Iszero ([ Push (Arg 3) ], [ Push (Arg 4) ]) , Update 4, Pop 4, Unwind ] match fent with | "add" -> (Sc (var, 2, prim_math_op Add), Add) | "sub" -> (Sc (var, 2, prim_math_op Sub), Sub) | "mul" -> (Sc (var, 2, prim_math_op Mul), Mul) | "div" -> (Sc (var, 2, prim_math_op Div), Div) | "equ" -> (Sc (var, 4, prim_equality), Unwind) | "seq" -> (Sc (var, 2, [ Push (Arg 0), Eval, Update 0, Push (Arg 2), Update 2, Pop 2, Unwind]), Eval) | e -> error @@ "No such primitive " ^ e type slot = As of int | Ls of int let offs n = function | As x -> As (x + n) | Ls x -> Ls (x + n) let incr = offs 1 let rec compile (env : M.t string slot) = function | Ref v -> match M.lookup v env with | Some (As i) -> (Push (Arg i) ::) | Some (Ls i) -> (Push (Local i) ::) | None -> (Push (Combinator v) ::) | App (f, x) -> let f = compile env f let x = compile (map incr env) x f # x # (Mkap ::) | Lam _ -> error "Can not compile lambda expression, did you forget to lift?" | Case (sc, alts) -> let rec go_alts = function | [] -> [] | Cons ((_, args, exp), rest) -> let c_arity = length args let env = args |> flip zip [Ls k | with k <- [c_arity - 1, c_arity - 2 .. 0]] |> M.from_list |> M.union (offs (c_arity + 1) <$> env) (c_arity, compile env exp [Slide c_arity]) :: go_alts rest compile env sc # (Eval ::) # (Casejump (go_alts alts) ::) | Lit i -> (Push (Int i) ::) | Let (vs, e) -> let n = length vs let env = vs |> map (fun (x, _) -> x) |> flip zip [Ls x | with x <- [n - 1, n - 2 .. 0]] |> M.from_list |> M.union (offs n <$> env) let defs = zip [1..n] vs let rec go : list (int * string * expr) -> dlist gm_code = function | [] -> id | Cons ((k, (_, exp)), rest) -> compile env exp # (Update (n - k) ::) # go rest (Alloc n ::) # go defs # compile env e # (Slide n ::) let supercomb (_, args, exp) = let env = M.from_list (zip args [0..length args]) let k = compile (M.from_list (zip args (As <$> [0..length args]))) exp k [Update (length env), Pop (length env), Unwind] let compile_cons = let rec go i = function | [] -> [] | Cons (Constr (n, args), rest) -> let arity = length args let rec pushargs i = if i < arity then Push (Arg (2 * i)) :: pushargs (i + 1) else [] Sc (n, arity, pushargs 0 ++ [ Pack (arity, i), Update (2 * arity), Pop (2 * arity), Unwind ]) :: go (i + 1) rest go 0 let program decs = let (decs, (_, lams, _)) = run_state (traverse (lambda_lift_sc # eta_contract) decs) (0, [], S.empty) let define nm k = let! x = get if nm `S.member` x then pure [] else let! _ = modify (S.insert nm) k let go = flip traverse (lams ++ decs) @@ function | Decl ((nm, args, _) as sc) -> define nm ( let code = supercomb sc [Sc (nm, length args, code)] |> pure ) | Data (_, _, cs) -> pure (compile_cons cs) | Foreign (Fimport { cc = Prim, var } as fi) -> define var ( let (code, _) = cg_prim fi pure [code] ) | Foreign f -> pure [Fd f] let (out, _) = run_state go S.empty join out