Browse Source

implement glueing and composition for glue

master
Amélia Liao 3 years ago
parent
commit
ebeb58c0bc
11 changed files with 514 additions and 133 deletions
  1. +23
    -0
      examples/axiom_j.itt
  2. +74
    -0
      examples/univalence.itt
  3. +78
    -11
      src/Elab.hs
  4. +183
    -14
      src/Eval.hs
  5. +13
    -5
      src/Main.hs
  6. +12
    -0
      src/Presyntax.hs
  7. +26
    -5
      src/Presyntax/Lexer.hs
  8. +29
    -10
      src/Presyntax/Parser.hs
  9. +75
    -8
      src/Syntax.hs
  10. +1
    -1
      src/Systems.hs
  11. +0
    -79
      test.itt

+ 23
- 0
examples/axiom_j.itt View File

@ -0,0 +1,23 @@
let
sym : (A : Type) (x y : A) -> Path (\x -> A) x y -> Path (\x -> A) y x
= λ A x y p i -> p (~ i)
in let
funext : (A : Type) (B : A -> Type) (f g : (x : A) -> B x) -> ((x : A) -> Path (\i -> B x) (f x) (g x)) -> Path (\i -> (x : A) -> B x) f g
= λ A B f g h i x -> h x i
in let
i0IsI1 : Path (\x -> I) i0 i1
= λ i -> i
in let
singContr : (A : Type) (a b : A) (p : Path (\j -> A) a b) -> Path (\i -> (x : A) * (Path (\j -> A) a x)) (a, \i -> a) (b, p)
= λ A a b p i -> (p i, λ j -> p (i && j))
in let
transport : (A : I -> Type) (a : A i0) -> A i1
= \A a -> comp A i0 (\i -> []) a
in let
Jay : (A : Type) (x : A)
(P : (y : A) -> Path (\i -> A) x y -> Type)
(d : P x (\i -> x))
(y : A) (p : Path (\i -> A) x y)
-> P y p
= \A x P d y p -> transport (\i -> P (p i) (\j -> p (i && j))) d
in Jay

+ 74
- 0
examples/univalence.itt View File

@ -0,0 +1,74 @@
let Id : (A : Type) -> A -> A -> Type = \A x y -> Path (\i -> A) x y in
let the : (A : Type) -> A -> A = \A x -> x in
let
fill : (i : I) (A : I -> Type)
(phi : I) (u : (i : I) -> Partial phi (A i))
-> Sub (A i0) phi (u i0) -> A i
= \i A phi u a0 ->
comp (\j -> A (i && j)) (phi || ~i) (\j -> [ phi -> u (i && j), ~i -> a0 ]) a0
in let
trans : (A : Type) (a b c : A)
-> Path (\i -> A) a b
-> Path (\i -> A) b c
-> Path (\i -> A) a c
= \A a b c p q i ->
comp (\j -> A) (i || ~i)
(\j -> [ ~i -> a, i -> q j ])
(p i)
in
let isContr : Type -> Type
= \A -> (x : A) * (y : A) -> Path (\i -> A) x y in
let fiber : (T A : Type) -> (T -> A) -> A -> Type
= \T A f y -> (x : T) * Path (\i -> A) y (f x) in
let isEquiv : (T A : Type) -> (T -> A) -> Type
= \T A f -> (y : A) -> isContr (fiber T A f y) in
let idFun : (B : Type) -> B -> B = \A x -> x in
let idEquiv : (B : Type) -> isEquiv B B (idFun B)
= \B y -> ((y, \i -> y), \u -> \i -> (u.2 i, \j -> u.2 (i && j))) in
let equiv : (A B : Type) -> Type
= \A B -> (f : A -> B) * isEquiv A B f in
let
univalence : (A B : Type) -> equiv A B -> Path (\i -> Type) A B
= \A B fun i -> Glue B (i || ~i) [~i -> A, i -> B] [~i -> fun, i -> (idFun B, idEquiv B)]
in
let idToEquiv : (A B : Type) -> Path (\i -> Type) A B -> equiv A B
= \A B p -> comp (\i -> equiv A (p i)) i0 (\i -> []) (idFun A,
idEquiv A)
in
let transp : (A B : Type) (p : Path (\i -> Type) A B) -> A -> B = \A B p -> comp (\i -> p i) i0 (\j -> []) in
let
univalenceBeta : (A B : Type) (f : equiv A B)
-> Id (A -> B) (transp A B (univalence A B f)) f.1
= \A B f i a ->
let b : B = transp B B (\i -> B) (f.1 a) in
let rem1 : Id B b (f.1 a) = \i -> fill ~i (\i -> B) i0 (\j -> []) (f.1 a) in
let rem2 : Id B (transp B B (\i -> B) b) b = \i -> fill ~i (\i -> B) i0 (\j -> []) b in
let goal : Id B (transp B B (\i -> B) b) (f.1 a) =
trans B (transp B B (\i -> B) b) b (f.1 a) rem2 rem1
in goal i
in
let not : Bool -> Bool = if (\x -> Bool) ff tt in
let notInv : (b : Bool) -> Id Bool b (not (not b)) = if (\x -> Id Bool x (not (not x))) (\i -> tt) (\i -> ff) in
let trueNotFalse : (A : Type) -> Id Bool tt ff -> A =
\A p -> comp (\i -> if (\b -> Type) (A -> A) A (p i)) i0 (\j -> []) (\x -> x) in
let notEquiv : isEquiv Bool Bool not =
let contract1 : (a : Bool) (b : Path (\i -> Bool) tt (not a)) -> Path (\i -> fiber Bool Bool not tt) (ff, \i -> tt) (a, b)
= \a -> if (\a -> (b : Path (\i -> Bool) tt (not a)) -> Path (\i -> fiber Bool Bool not tt) (ff, \i -> tt) (a, b))
(\b -> trueNotFalse (Path (\i -> fiber Bool Bool not tt) (ff, \i -> tt) (tt, b)) b)
(\b i -> (ff, \j -> b (i && j)))
a in
let contract2 : (a : Bool) (b : Path (\i -> Bool) ff (not a)) -> Path (\i -> fiber Bool Bool not ff) (tt, \i -> ff) (a, b) =
\a -> if (\a -> (b : Path (\i -> Bool) ff (not a)) -> Path (\i -> fiber Bool Bool not ff) (tt, \i -> ff) (a, b))
(\b i -> (tt, \j -> b (i && j)))
(\b -> trueNotFalse (Path (\i -> fiber Bool Bool not ff) (tt, \i -> ff) (ff, b)) (\j -> b ~j))
a in
\b -> if (\b -> isContr (fiber Bool Bool not b))
((ff, \i -> tt), \fiber -> contract1 fiber.1 fiber.2)
((tt, \i -> ff), \fiber -> contract2 fiber.1 fiber.2)
b
in the (Id Bool (not ff) tt) (\i -> transp Bool Bool (univalence Bool Bool (not, notEquiv)) ff)

+ 78
- 11
src/Elab.hs View File

@ -42,14 +42,9 @@ check env (P.Span s e exp) wants =
`catch` \er -> throwIO $ InSpan s e (UnifyError er)
check env exp (VSub a fm@(toFormula -> Just phi) el) = do
putStrLn $
"checking cubical subtype of " ++ show a ++ " with φ = " ++ show phi
tm <- check env exp a
putStrLn $ "the expression is " ++ show tm
for (addFormula phi env) \env -> do
let tm' = eval env tm
putStrLn $ "have " ++ show tm'
unifyTC env tm' el
pure (InclSub (quote a) (quote fm) (quote el) tm)
@ -95,7 +90,6 @@ check env (P.Partial fs) ty = do
pure (fn, tn)
check env exp (VPartial fm@(toFormula -> Just phi) a) = do
print $ (phi, a)
case addFormula phi env of
[] -> pure $ System (FMap mempty)
(x:xs) -> do
@ -115,7 +109,6 @@ check env (P.Lam s b) expected = do
let t = Lam s I bd
t' = eval env t
print $ (Map.lookup "phi" (names env), t', t' @@ VI0)
checkBoundary env [s] t'
[ ([VI0], x)
, ([VI1], y)
@ -230,7 +223,7 @@ infer env (P.IOr x y) = do
y <- check env y VI
pure (IOr x y, VI)
infer env P.Path = do
infer env P.Path =
pure
( Lam "A" (quote index_t) $
Lam "x" (App (Var "A") I0) $
@ -240,7 +233,7 @@ infer env P.Path = do
VPi "x" (a @@ VI0) \_ ->
VPi "y" (a @@ VI1) (const VType))
infer env P.PartialT = do
infer env P.PartialT =
pure
( Lam "r" I $
Lam "A" Type $
@ -248,8 +241,19 @@ infer env P.PartialT = do
, VPi "I" VI \i ->
VPi "A" VType (const VTypeω))
infer env P.PartialP =
pure
( Lam "r" I $
Lam "A" (Partial (Var "r") Typeω) $
PartialP (Var "r") (Var "A")
, VPi "phi" VI \i ->
VPi "A" (VPartial i VTypeω) (const VTypeω))
infer env P.Comp = do
let u_t a r = VPi "i" VI \i -> VPartial r (a @@ i)
let
u_t a r = VPi "i" VI \i -> VPartial r (a @@ i)
index_t :: Value
index_t = VPi "_" VI (const VType)
pure
( Lam "A" (quote index_t) $
@ -264,7 +268,7 @@ infer env P.Comp = do
a @@ VI1
)
infer env P.SubT = do
infer env P.SubT =
pure
( Lam "A" Type $
Lam "phi" I $
@ -275,6 +279,69 @@ infer env P.SubT = do
VPi "_" (VPartial phi a) (const VType)
)
infer env P.GlueTy =
pure
( Lam "A" Type $
Lam "phi" I $
Lam "T" (Partial (Var "phi") Type) $
Lam "e" (PartialP (Var "phi") (quote (equiv (VVar "T") (VVar "A")))) $
GlueTy (Var "A") (Var "phi") (Var "T") (Var "e")
, VPi "A" VType \a ->
VPi "phi" VI \phi ->
VPi "T" (VPartial phi VType) \t ->
VPi "e" (VPartialP phi (equiv t a)) \_ ->
VType
)
infer env P.Glue =
pure
( Lam "A" Type $
Lam "phi" I $
Lam "T" (Partial (Var "phi") Type) $
Lam "e" (PartialP (Var "phi") (quote (equiv (VVar "T") (VVar "A")))) $
Lam "t" (PartialP (Var "phi") (Var "T")) $
Lam "a" (Var "A") $
Glue (Var "A") (Var "phi") (Var "T") (Var "e") (Var "t") (Var "a")
, VPi "A" VType \a ->
VPi "phi" VI \phi ->
VPi "T" (VPartial phi VType) \t ->
VPi "e" (VPartialP phi (equiv t a)) \_ ->
VPi "_" (VPartialP phi t) \_ ->
VPi "_" a \_ -> VType
)
infer env P.Unglue =
pure
( Lam "A" Type $
Lam "phi" I $
Lam "T" (Partial (Var "phi") Type) $
Lam "e" (PartialP (Var "phi") (quote (equiv (VVar "T") (VVar "A")))) $
Lam "g" (GlueTy (Var "A") (Var "phi") (Var "T") (Var "e")) $
Unglue (Var "A") (Var "phi") (Var "T") (Var "e") (Var "g")
, VPi "A" VType \a ->
VPi "phi" VI \phi ->
VPi "T" (VPartial phi VType) \t ->
VPi "e" (VPartialP phi (equiv t a)) \e ->
VPi "_" (VGlue a phi t e) \_ -> a
)
infer env P.Bool = pure (Bool, VType)
infer env P.Tt = pure (Tt, VBool)
infer env P.Ff = pure (Ff, VBool)
infer env P.If =
pure
(Lam "P" (Pi "_" Bool Type) $
Lam "x" (App (Var "P") Tt) $
Lam "y" (App (Var "P") Ff) $
Lam "b" Bool $
If (Var "P") (Var "x") (Var "y") (Var "b")
, VPi "P" (VPi "_" VBool (const VType)) \p ->
VPi "_" (p @@ VTrue) \_ ->
VPi "_" (p @@ VFalse) \_ ->
VPi "x" VBool \x -> p @@ x)
infer env (P.INot x) = (, VI) . INot <$> check env x VI
infer env P.Lam{} = error "can't infer type for lambda"


+ 183
- 14
src/Eval.hs View File

@ -12,8 +12,6 @@ import Data.Typeable
import Data.IORef
import Data.Maybe
import Debug.Trace
import GHC.Stack
import qualified Presyntax as P
@ -24,6 +22,7 @@ import Syntax
import System.IO.Unsafe (unsafePerformIO)
import Systems
import Debug.Trace (traceShowId)
iand :: Value -> Value -> Value
iand = \case
@ -52,26 +51,37 @@ inot (VINot x) = x
inot x = VINot x
(@@) :: Value -> Value -> Value
VNe hd xs @@ vl = VNe hd (PApp vl:xs)
VLam _ _ k @@ vl = k vl
VEqGlued a b @@ vl = VEqGlued (a @@ vl) (b @@ vl)
VOfSub a phi u0 x @@ vl = x @@ vl
VSystem fs @@ vl = mapVSystem (VSystem fs) (@@ vl)
f @@ _ = error $ "can't apply argument to " ++ show f
VNe hd xs @@ vl = VNe hd (PApp vl:xs)
VLam _ _ k @@ vl = k vl
VEqGlued a b @@ vl = VEqGlued (a @@ vl) (b @@ vl)
VOfSub (VPi _ _ k) phi u0 x @@ vl = VOfSub (k vl) phi (u0 @@ vl) (x @@ vl)
VSystem fs @@ vl = mapVSystem (VSystem fs) (@@ vl)
VIf (VLam s d k) c t b @@ vl = VIf (VLam s d (ap . force . k)) (c @@ vl) (t @@ vl) b where
ap (VPi _ _ r) = r vl
ap _ = error "type error when pushing application into if"
f @@ _ = error $ "\ncan't apply argument to " ++ show f
proj1 :: Value -> Value
proj1 (VPair x _) = x
proj1 (VEqGlued x y) = VEqGlued (proj1 x) (proj1 y)
proj1 (VNe s xs) = VNe s (PProj1:xs)
proj1 (VOfSub (VSigma _ d _) phi u0 x) = VOfSub d phi (proj1 u0) (proj1 x)
proj1 v@VSystem{} = mapVSystem v proj1
proj1 (VIf (VLam s d k) c t b) = VIf (VLam s d (proj1t . k)) (proj1 c) (proj1 t) b where
proj1t (VSigma _ d _) = d
proj1t _ = error "type error when pushing proj1 into if"
proj1 x = error $ "can't proj1 " ++ show x
proj2 :: Value -> Value
proj2 (VPair _ y) = y
proj2 (VEqGlued x y) = VEqGlued (proj1 x) (proj1 y)
proj2 (VEqGlued x y) = VEqGlued (proj2 x) (proj2 y)
proj2 (VNe s xs) = VNe s (PProj2:xs)
proj2 (VOfSub (VSigma _ d r) phi u0 x) =
VOfSub (r (proj1 x)) phi (proj2 u0) (proj2 x)
proj2 v@VSystem{} = mapVSystem v proj2
proj2 (VIf (VLam s d k) c t b) = VIf (VLam s d (proj2t . k)) (proj2 c) (proj2 t) b where
proj2t (VSigma _ d r) = r (VIf (VLam s VBool (const d)) (proj1 c) (proj1 t) b)
proj2t _ = error "type error when pushing proj1 into if"
proj2 x = error $ "can't proj2 " ++ show x
pathp :: Env -> Value -> Value -> Value -> Value -> Value -> Value
@ -81,12 +91,17 @@ pathp env p x y f@(VLine _a _x _y e) i =
Just P.Top -> VEqGlued (e i) y
_ -> e i
pathp env p x y (VEqGlued e e') i = VEqGlued (pathp env p x y e i) (pathp env p x y e' i)
pathp env p x y (VNe hd sp) i =
case reduceCube env i of
Just P.Bot -> VEqGlued (VNe hd (PPathP p x y i:sp)) x
Just P.Top -> VEqGlued (VNe hd (PPathP p x y i:sp)) y
_ | quote x == quote y -> VEqGlued (VNe hd (PPathP p x y i:sp)) x
_ -> VNe hd (PPathP p x y i:sp)
pathp env p x y (VOfSub _ _ _ v) i = pathp env p x y v i
pathp env p x y v@VSystem{} i = mapVSystem v (\f -> pathp env p x y f i)
pathp env p x y f i = error $ "Invalid pathP " ++ show f ++ " @@ " ++ show i
comp :: Env -> Value -> Formula -> Value -> Value -> Value
comp env a@(VLam ivar VI fam) phi u a0 = glue $ go (fam (VVar "woopsie")) phi u a0 where
@ -94,7 +109,7 @@ comp env a@(VLam ivar VI fam) phi u a0 = glue $ go (fam (VVar "woopsie")) phi u
stuck = VComp a (toValue phi) u a0
glue :: Value -> Value
glue = VOfSub (fam VI1) (toValue' env phi) (u @@ VI1)
glue = VOfSub (fam VI1) (toValue phi) (u @@ VI1)
go :: HasCallStack => Value -> Formula -> Value -> Value -> Value
go VPi{} phi u a0 =
@ -148,6 +163,35 @@ comp env a@(VLam ivar VI fam) phi u a0 = glue $ go (fam (VVar "woopsie")) phi u
])
(pathp env (ai0 @@ VI0) u0 v0 p0 j)
go VGlue{} psi b b0 =
let
base i = let VGlue base _ _ _ = force $ fam i in base
phi i =
case force (fam i) of
VGlue _ phi _ _ -> fromJust (reduceCube env phi)
x -> error (show x)
types i = let VGlue _ _ types _ = force $ fam i in types
equivs i = let VGlue _ _ _ equivs = force $ fam i in equivs
a i = mapVSystem (b @@ i) (unglue (base i) (phi i) (types i) (equivs i))
a0 = unglue (base VI0) (phi VI0) (types VI0) (equivs VI0) b0
del = faceForall phi
a1' = comp env (VLam "i" VI base) psi (VLam "i" VI a) a0
t1' = comp env (VLam "i" VI types) psi (VLam "i" VI (b @@)) b0
omega = pres env types base (flip mapVSystem proj1 . equivs) psi b b0
t1alpha = opEquiv env (base VI1) (types VI1) (equivs VI1) (orFormula [del, psi]) ts ps a1'
(t1, alpha) = (proj1 t1alpha, proj2 t1alpha)
ts = VSystem (FMap (Map.fromList [(del, t1'), (psi, b @@ VI1)]))
ps = VSystem (FMap (Map.fromList [(del, omega), (psi, VLine (VLam "j" VI \_ -> base VI1) a1' a1' (\j -> a1'))]))
a1 = comp env (VLam "j" VI (const (base VI1))) (orFormula [phi VI1, psi]) (VLam "j" VI \j -> a1_sys j) a1'
a1_sys j = VSystem (FMap (Map.fromList [(phi VI1, pathp env (base VI1) a1' (mapVSystem (equivs VI1) proj1) alpha j), (psi, a VI1)]))
b1 = introGlue (base VI1) (phi VI1) (types VI1) (equivs VI1) t1 a1
in b1
go VBool{} _ _ a0 = a0
go a P.Top u a0 = u @@ VI1
go a phi u a0 = stuck
@ -158,6 +202,50 @@ comp env va phi u a0 =
where
phi' = toValue phi
opEquiv :: Env -> Value -> Value -> Value -> Formula -> Value -> Value -> Value -> Value
opEquiv env aT tT f phi t p a = VOfSub ty (toValue phi) (VPair t p) v where
fun = proj1 f
ty = VSigma "x" tT \x -> VPath (VLam "i" VI (const aT)) a (fun @@ x)
sys = Map.singleton phi (VPair t p)
v = contr env ty (proj2 f @@ a) phi (VSystem (FMap sys))
force :: Value -> Value
force (VEqGlued x _) = force x
force (VOfSub _ _ _ x) = force x
force x = x
faceForall :: (Value -> Formula) -> Formula
faceForall k = go (k (VVar "$elim")) where
go (P.Is0 "$elim") = P.Bot
go (P.Is1 "$elim") = P.Bot
go (P.Or a b) = orFormula [go a, go b]
go (P.And a b) = andFormula [go a, go b]
go x = x
pres :: Env -> (Value -> Value) -> (Value -> Value) -> (Value -> Value) -> Formula -> Value -> Value -> Value
pres env tT tA f phi t t0 = VOfSub (VPath (tA VI1) c1 c2) (toValue phi) base (VLine (tA VI1) c1 c2 cont) where
c1 = comp env (VLam "i" VI tA) phi (VLam "i" VI \j -> mapVSystem t (f j @@)) (f VI0 @@ t0)
c2 = f VI1 @@ comp env (VLam "i" VI tA) phi t t0
base = VLine (tA VI1) (f VI1 @@ (t @@ VI1)) (f VI1 @@ (t @@ VI1)) (\i -> f VI1 @@ (t @@ VI1))
cont j =
let v i = fill env i tT phi t t0
form = orFormula [phi, fromJust (reduceCube env j)]
a0 = f VI0 @@ t0
in comp env (VLam "I" VI tA) form
(VLam "I" VI (\j -> VSystem (FMap (Map.fromList [(form, f j @@ v j)]))))
a0
contr :: Env -> Value -> Value -> Formula -> Value -> Value
contr env a aC phi u =
comp env (VLam "i" VI (const a)) phi
(VLam "i" VI (pathp env a u (proj1 aC) (proj2 aC @@ u)))
(proj1 aC)
-- t : Partial phi T
-- T : Type
-- a : A
-- f : Equiv T A
mkVSystem :: Map.Map Formula Value -> Value
mkVSystem mp
| Just e <- Map.lookup P.Top mp = e
@ -189,6 +277,19 @@ evalSystem env face = mk . Map.fromList . mapMaybe (uncurry go) . Map.toList $ f
[(_, x)] -> x
_ -> mkVSystem x
glue :: Value -> Formula -> Value -> Value -> Value
-- glue baseT P.Top types _equivs = types
glue baseT phi types equivs = VGlue baseT (toValue phi) types equivs
introGlue :: Value -> Formula -> Value -> Value -> Value -> Value -> Value
introGlue baseT P.Top types equivs t a = t
introGlue baseT phi types equivs t a = VGlueIntro baseT (toValue phi) types equivs t a
unglue :: Value -> Formula -> Value -> Value -> Value -> Value
unglue baseT P.Top types equivs b = mapVSystem equivs ((@@ b) . proj1)
unglue baseT phi types equivs val =
VOfSub baseT (toValue phi) (mapVSystem equivs ((@@ val) . proj1)) (VGlueElim baseT (toValue phi) types equivs val)
eval :: Env -> Term -> Value
eval env = \case
Var v ->
@ -228,6 +329,7 @@ eval env = \case
Path p x y -> VPath (eval env p) (eval env x) (eval env y)
Partial r a -> VPartial (eval env r) (eval env a)
PartialP r a -> VPartialP (eval env r) (eval env a)
PathI p x y s e -> VLine (eval env p) (eval env x) (eval env y) (\ a -> eval env{ names = Map.insert s (VI, a) (names env) } e)
PathP p x y f i -> pathp env (eval env p) (eval env x) (eval env y) (eval env f) (eval env i)
@ -246,6 +348,50 @@ eval env = \case
System fs -> evalSystem env (getSystem fs)
GlueTy a phi types equivs ->
let phi' = eval env phi in
case reduceCube env phi' of
Just formula -> glue (eval env a) formula (eval env types) (eval env equivs)
Nothing -> VGlue (eval env a) phi' (eval env types) (eval env equivs)
Glue a phi types equivs t a0 ->
let phi' = eval env phi
t' = eval env t
a0' = eval env a0
types' = eval env types
equivs' = eval env equivs
a' = eval env a
in
case reduceCube env phi' of
Just formula -> introGlue a' formula types' equivs' t' a0'
Nothing -> VGlueIntro a' phi' types' equivs' t' a0'
Unglue a phi types equivs val ->
let phi' = eval env phi
val' = eval env val
types' = eval env types
equivs' = eval env equivs
a' = eval env a
in
case reduceCube env phi' of
Just formula -> unglue a' formula types' equivs' val'
Nothing -> VGlueElim a' phi' types' equivs' val'
If p x y t -> elimBool (eval env p) (eval env x) (eval env y) (eval env t)
Tt -> VTrue
Ff -> VFalse
Bool -> VBool
elimBool :: Value -> Value -> Value -> Value -> Value
elimBool _ x _ (VEqGlued _ VTrue) = x
elimBool _ x _ (VOfSub _ _ _ VTrue) = x
elimBool _ x _ VTrue = x
elimBool _ _ y (VEqGlued _ VFalse) = y
elimBool _ _ y (VOfSub _ _ _ VFalse) = y
elimBool _ _ y VFalse = y
elimBool p x y t = VIf p x y t
data UnifyError
= Mismatch Value Value
@ -320,10 +466,12 @@ unify env (VSigma x d r) (VSigma _ d' r') = do
unify env (r (VVar x)) (r' (VVar x))
unify env VType VType = pure ()
unify env VI VI = pure ()
unify env VBool VBool = pure ()
unify env VI VI = pure ()
unify env (VPair a b) e = unify env a (proj1 e) *> unify env b (proj2 e)
unify env e (VPair a b) = unify env a (proj1 e) *> unify env b (proj2 e)
unify env (VPair a b) (VPair c d) = unify env a c *> unify env b d
unify env (VPath a x y) (VPath a' x' y') = unify env a a' *> unify env x x' *> unify env y y'
unify env (VComp a phi u a0) (VComp a' phi' u' a0') =
traverse_ (uncurry (unify env))
@ -343,15 +491,23 @@ unify env (VSystem fs) vl
| ((_, vl'):_) <-
Map.toList (Map.filterWithKey (\f _ -> isTrue (toValue' env f)) (getSystem fs))
= unify env vl' vl
| Map.null (getSystem fs) = pure ()
unify env vl (VSystem fs)
| ((_, vl'):_) <-
Map.toList (Map.filterWithKey (\f _ -> isTrue (toValue' env f)) (getSystem fs))
= unify env vl' vl
| Map.null (getSystem fs) = pure ()
unify env VType VTypeω = pure ()
unify env VTypeω VTypeω = pure ()
unify env (VGlue _ VI1 b _) x = unify env b x
unify env VTrue VTrue = pure ()
unify env VFalse VFalse = pure ()
unify env (VIf p a b c) (VIf p' a' b' c') = traverse_ (uncurry (unify env)) [(p, p'), (a, a'), (b, b'), (c, c')]
unify env x y =
case sameCube env x y of
Just True -> pure ()
@ -422,6 +578,10 @@ isPartialType f p@(VPartial x y) =
case toFormula x of
Just x -> pure (x, y)
Nothing -> throwIO $ NotPartialType f p
isPartialType f p@(VPartialP x y) =
case toFormula x of
Just x -> pure (x, y)
Nothing -> throwIO $ NotPartialType f p
isPartialType f x = throwIO $ NotPartialType f x
getVar :: IO Value
@ -451,7 +611,7 @@ fill env i a phi u a0 =
a0
where
uiand j = u @@ (i `iand` j)
ifc = fromJust (reduceCube env i)
ifc = fromMaybe P.Bot $ (reduceCube env i)
toValue :: Formula -> Value
toValue P.Top = VI1
@ -475,8 +635,17 @@ toValue' env (P.Is0 x) =
toValue' env (P.Is1 x) =
case Map.lookup x (names env) of
Just (VI, x) -> x
_ -> error $ "type error in toValue'"
vl -> error $ "type error in toValue': Is1 " ++ show x ++ ": " ++ show vl
isTrue :: Value -> Bool
isTrue VI1 = True
isTrue _ = False
equiv :: Value -> Value -> Value
equiv t a = VSigma "f" (VPi "_" t (const a)) \f -> isEquiv t a f
isEquiv :: Value -> Value -> Value -> Value
isEquiv t a f = VPi "y" a \y -> isContr (VSigma "x" t \x -> VPath (VLam "_" VI (const a)) y (f @@ x))
isContr :: Value -> Value
isContr t = VSigma "x" t \x -> VPi "y" t \y -> VPath (VLam "_" VI (const t)) x y

+ 13
- 5
src/Main.hs View File

@ -20,6 +20,7 @@ import System.Console.Haskeline (runInputT, defaultSettings, getInputLine)
import System.Exit
import Systems (formulaOfFace, Face)
import System.Environment
showTypeError :: Maybe [String] -> Elab.TypeError -> String
showTypeError lines (NotInScope l_c) = "Variable not in scope: " ++ l_c
@ -63,7 +64,14 @@ makeRange line (_, sc) (_, ec) = line ++ "\n" ++ replicate (sc + 1) ' ' ++ repli
main :: IO ()
main = do
code <- readFile "test.itt"
t <- getArgs
case t of
[file] -> Main.check file
_ -> repl
check :: FilePath -> IO ()
check file = do
code <- readFile file
let
ste e = do
putStrLn $ showTypeError (Just (lines code)) e
@ -72,7 +80,7 @@ main = do
Left e -> print e
Right x -> do
(tm, _) <- infer (Env mempty) x `catch` ste `catch` (ste . UnifyError)
print tm
print (eval (Env mempty) tm)
repl :: IO ()
repl = runInputT defaultSettings (go (Env mempty)) where
@ -93,7 +101,7 @@ repl = runInputT defaultSettings (go (Env mempty)) where
Right (Assume vs) ->
let
loop env ((v, t):vs) = do
tm <- liftIO $ check env t VTypeω
tm <- liftIO $ Elab.check env t VTypeω
let ty = eval env tm
loop env{ names = Map.insert v (ty, VVar v) (names env) } vs
loop env [] = go env
@ -111,9 +119,9 @@ repl = runInputT defaultSettings (go (Env mempty)) where
go env
Right (Declare n t e) -> do
(do
t <- liftIO $ check env t VTypeω
t <- liftIO $ Elab.check env t VTypeω
let t' = eval env t
b <- liftIO $ check env e t'
b <- liftIO $ Elab.check env e t'
let b' = eval env b
go env{ names = Map.insert n (t', b') (names env) })
`catch` \e -> (liftIO $ putStrLn (showTypeError (Just [i]) e)) *> go env


+ 12
- 0
src/Presyntax.hs View File

@ -30,12 +30,24 @@ data Exp
-- Formulas, partial elements, and the type of formulas
| Partial [(Formula, Exp)]
| PartialT
| PartialP
-- Compositions
| Comp
-- Cubical subtypes
| SubT
-- Glueing
| GlueTy
| Glue
| Unglue
-- Bools
| Bool
| Tt
| Ff
| If
deriving (Eq, Show, Ord)
data Formula


+ 26
- 5
src/Presyntax/Lexer.hs View File

@ -13,7 +13,8 @@ data TokenClass
| Tok_type
| Tok_typeω
| Tok_path
| Tok_phi
| Tok_Partial
| Tok_PartialP
| Tok_sub
| Tok_comp
| Tok_tr
@ -22,6 +23,15 @@ data TokenClass
| Tok_I0
| Tok_I1
| Tok_Glue
| Tok_glue
| Tok_unglue
| Tok_bool
| Tok_tt
| Tok_ff
| Tok_if
| Tok_oparen
| Tok_cparen
@ -179,10 +189,21 @@ lexString = go 0 0 0 where
finishIdent c
| T.pack "Type" == c = Tok_type
| T.pack "Typeω" == c || T.pack "Pretype" == c = Tok_typeω
| T.pack "Path" == c = Tok_path
| T.pack "Partial" == c = Tok_phi
| T.pack "Sub" == c = Tok_sub
| T.pack "comp" == c = Tok_comp
| T.pack "Path" == c = Tok_path
| T.pack "Partial" == c = Tok_Partial
| T.pack "PartialP" == c = Tok_PartialP
| T.pack "Sub" == c = Tok_sub
| T.pack "comp" == c = Tok_comp
| T.pack "Glue" == c = Tok_Glue
| T.pack "glue" == c = Tok_glue
| T.pack "unglue" == c = Tok_unglue
| T.pack "Bool" == c = Tok_bool
| T.pack "tt" == c = Tok_tt
| T.pack "ff" == c = Tok_ff
| T.pack "if" == c = Tok_if
| T.pack "tr" == c = Tok_tr
| T.pack "I" == c = Tok_I
| T.pack "i0" == c = Tok_I0


+ 29
- 10
src/Presyntax/Parser.hs View File

@ -185,18 +185,36 @@ exprConj = attachPos $
atom0 :: Parser Exp
atom0 = attachPos $
fmap (Var . T.unpack) var
<|> fmap (const Type) (expect Tok_type)
<|> fmap (const Typeω) (expect Tok_typeω)
<|> fmap (const I) (expect Tok_I)
<|> fmap (const I0) (expect Tok_I0)
<|> fmap (const I1) (expect Tok_I1)
<|> fmap (const Path) (expect Tok_path)
<|> fmap (const SubT) (expect Tok_sub)
<|> fmap (const PartialT) (expect Tok_phi)
<|> fmap (const Comp) (expect Tok_comp)
<|> fmap INot (expect Tok_not *> atom)
<|> keywords
<|> fmap INot (expect Tok_not *> atom)
<|> parens pair
<|> square (Partial <$> (system <|> pure []))
where
table = [ (Type, Tok_type)
, (Typeω, Tok_typeω)
, (I, Tok_I)
, (I0, Tok_I0)
, (I1, Tok_I1)
, (Path, Tok_path)
, (SubT, Tok_sub)
, (PartialT, Tok_Partial)
, (PartialP, Tok_PartialP)
, (Comp, Tok_comp)
, (SubT, Tok_sub)
, (Comp, Tok_comp)
, (GlueTy, Tok_Glue)
, (Glue, Tok_glue)
, (Unglue, Tok_unglue)
, (Bool, Tok_bool)
, (Tt, Tok_tt)
, (Ff, Tok_ff)
, (If, Tok_if)
]
keyword (x, y) = fmap (const x) (expect y)
keywords = foldr ((<|>) . keyword) empty table
atom :: Parser Exp
atom = attachPos $
@ -282,3 +300,4 @@ formula = conjunction where
<|> (Is0 . T.unpack) <$> (expect Tok_not *> var)
<|> Top <$ expect Tok_I1
<|> Bot <$ expect Tok_I0
<|> parens conjunction

+ 75
- 8
src/Syntax.hs View File

@ -42,9 +42,33 @@ data Term
| System (System Term)
| Partial Term Term
| PartialP Term Term
| Comp Term Term Term Term
| Sub Term Term Term
| InclSub Term Term Term Term
| GlueTy
Term -- Base type
Term -- Extent
Term -- Partial types
Term -- Partial equivs
| Glue
Term -- Base
Term -- Extent
Term -- Partial types
Term -- Partial equivs
Term -- t
Term -- a
| Unglue
Term -- Base
Term -- Extent
Term -- Partial types
Term -- Partial equivs
Term -- glued value
| Bool
| Tt | Ff
| If Term Term Term Term
deriving (Eq, Ord)
instance Show Term where
@ -53,13 +77,17 @@ instance Show Term where
Var s -> showString s
System fs -> showListWith showPE (Map.toList (getSystem fs))
-- ew
App (App (App (Lam _ _ (Lam _ _ (Lam _ _ Path{}))) a) x) y -> showsPrec p (Path a x y)
App (App (App (Lam _ _ (Lam _ _ (Lam _ _ Sub{}))) a) x) y -> showsPrec p (Sub a x y)
App (App (Lam _ _ (Lam _ _ Partial{})) phi) r -> showsPrec p (Partial phi r)
App (App (App (Lam _ _ (Lam _ _ (Lam _ _ Path{}))) a) x) y -> showsPrec p (Path a x y)
App (App (App (Lam _ _ (Lam _ _ (Lam _ _ Sub{}))) a) x) y -> showsPrec p (Sub a x y)
App (App (Lam _ _ (Lam _ _ Partial{})) phi) r -> showsPrec p (Partial phi r)
App (App (Lam _ _ (Lam _ _ PartialP{})) phi) r -> showsPrec p (PartialP phi r)
App (App (App (App (Lam _ _ (Lam _ _ (Lam _ _ (Lam _ _ Comp{})))) a) phi) u) a0 ->
showsPrec p (Comp a phi u a0)
App (App (App (App (Lam _ _ (Lam _ _ (Lam _ _ (Lam _ _ GlueTy{})))) a) phi) u) a0 ->
showsPrec p (GlueTy a phi u a0)
App f x -> showParen (p >= app_prec) $
showsPrec fun_prec f
. showChar ' '
@ -131,13 +159,27 @@ instance Show Term where
INot s -> showChar '~' . showsPrec p s
Path a x y -> showsPrec p (App (App (App (Var "Path") a) x) y)
Sub a x y -> showsPrec p (App (App (App (Var "Sub") a) x) y)
Partial r a -> showsPrec p (App (App (Var "Partial") r) a)
Path a x y -> showApps p (Var "Path") [a, x, y]
Sub a x y -> showApps p (Var "Sub") [a, x, y]
InclSub _a _phi _u0 a0 -> showsPrec p a0
Comp a I0 (Lam _ I (System (FMap (Map.null -> True)))) a0 -> showsPrec p (foldl App (Var "transp") [a, a0])
Comp a phi u a0 -> showsPrec p (foldl App (Var "comp") [a, phi, u, a0])
GlueTy a phi t e -> showApps p (Var "Glue") [a, phi, t, e]
Glue base phi ty te t a ->
showApps p (Var "glue") [phi, t, a]
Unglue base phi ty te a ->
showApps p (Var "unglue") [a]
Partial r a -> showApps p (Var "Partial") [r, a]
PartialP r a -> showApps p (Var "PartialP") [r, a]
Comp a phi u a0 -> showApps p (Var "comp") [a, phi, u, a0]
If _ Ff Tt d -> showApps p (Var "not") [d]
If _ b c d -> showApps p (Var "if") [b, c, d]
Bool -> showString "Bool"
Tt -> showString "tt"
Ff -> showString "ff"
PathI a x y s b -> showParen (p >= fun_prec) $
showString ("λ " ++ s ++ " -> ")
@ -163,6 +205,9 @@ instance Show Term where
or_prec = 3
fun_prec = 1
showApps :: Int -> Term -> [Term] -> ShowS
showApps p f xs = showsPrec p (foldl App f xs)
showPE :: (Formula, Term) -> String -> String
showPE (f, t) = shows f . showString " -> " . shows t
@ -188,8 +233,18 @@ data Value
| VPath Value Value Value
| VSub Value Value Value
| VPartial Value Value
| VPartialP Value Value
| VComp Value Value Value Value
| VGlue Value Value Value Value
| VGlueIntro Value Value Value Value Value Value
| VGlueElim Value Value Value Value Value
| VBool
| VTrue
| VFalse
| VIf Value Value Value Value
data Proj
= PApp Value
| PPathP Value Value Value Value
@ -227,6 +282,7 @@ quote = go mempty where
go scope (VPath a x y) = Path (go scope a) (go scope x) (go scope y)
go scope (VSub a x y) = Sub (go scope a) (go scope x) (go scope y)
go scope (VPartial r a) = Partial (go scope r) (go scope a)
go scope (VPartialP r a) = PartialP (go scope r) (go scope a)
go scope (VComp a b c d) = Comp (go scope a) (go scope b) (go scope c) (go scope d)
go scope (VEqGlued e _) = go scope e
@ -237,6 +293,17 @@ quote = go mempty where
go scope (VSystem (FMap fs)) = System (FMap (fmap (go scope) fs))
go scope (VOfSub _ _ _ x) = go scope x
go scope (VGlue a phi tys eqvs) = GlueTy (go scope a) (go scope phi) (go scope tys) (go scope eqvs)
go scope (VGlueIntro base phi tys eqvs t a) =
Glue (go scope base) (go scope phi) (go scope tys) (go scope eqvs) (go scope t) (go scope a)
go scope (VGlueElim base phi tys eqvs a) =
Unglue (go scope base) (go scope phi) (go scope tys) (go scope eqvs) (go scope a)
go scope VBool = Bool
go scope VTrue = Tt
go scope VFalse = Ff
go scope (VIf a b c d) = If (go scope a) (go scope b) (go scope c) (go scope d)
goSpine :: Set String -> Term -> Proj -> Term
goSpine scope t (PApp x) = App t (go scope x)
goSpine scope t (PPathP a x y i) = PathP (go scope a) (go scope x) (go scope y) t (go scope i)


+ 1
- 1
src/Systems.hs View File

@ -94,4 +94,4 @@ emptySystem :: System a
emptySystem = FMap mempty
mapSystem :: System a -> (a -> b) -> System b
mapSystem (FMap x) f = FMap (fmap f x)
mapSystem (FMap x) f = FMap (Map.filterWithKey (\f _ -> f /= Bot) (fmap f x))

+ 0
- 79
test.itt View File

@ -1,79 +0,0 @@
{- {- let
sym : (A : Type) (x y : A) -> Path (\x -> A) x y -> Path (\x -> A) y x
= λ A x y p i -> p (~ i)
in let
funext : (A : Type) (B : A -> Type) (f g : (x : A) -> B x) -> ((x : A) -> Path (\i -> B x) (f x) (g x)) -> Path (\i -> (x : A) -> B x) f g
= λ A B f g h i x -> h x i
in let
i0IsI1 : Path (\x -> I) i0 i1
= λ i -> i
in let
singContr : (A : Type) (a b : A) (p : Path (\j -> A) a b) -> Path (\i -> (x : A) * (Path (\j -> A) a x)) (a, \i -> a) (b, p)
= λ A a b p i -> (p i, λ j -> p (i && j))
in let
transport : (A : I -> Type) (a : A i0) -> A i1
= \A a -> comp A i0 (\i -> []) a
in let
Jay : (A : Type) (x : A)
(P : (y : A) -> Path (\i -> A) x y -> Type)
(d : P x (\i -> x))
(y : A) (p : Path (\i -> A) x y)
-> P y p
= \A x P d y p -> transport (\i -> P (p i) (\j -> p (i && j))) d
in -}
let
fill : (i : I) (A : I -> Type)
(phi : I) (u : (i : I) -> Partial phi (A i))
-> Sub (A i0) phi (u i0) -> A i
= \i A phi u a0 ->
comp (\j -> A (i && j)) (phi || ~i) (\j -> [ phi -> u (i && j), ~i -> a0 ]) a0
in let
trans : (A : Type) (a b c : A)
-> Path (\i -> A) a b
-> Path (\i -> A) b c
-> Path (\i -> A) a c
= \A a b c p q i ->
comp (\j -> A) (i || ~i)
(\j -> [ ~i -> a, i -> q j ])
(p i)
in let
elimI : (P : I -> Type)
(a : P i0)
(b : P i1)
-> Path P a b
-> (i : I) -> P i
= \P a b p i -> p i
in let
contrI : (i : I) -> Path (\i -> I) i0 i
= \i -> elimI (\x -> Path (\i -> I) i0 x) (\i -> i0) (\i -> i) (\i j -> i && j) i
in let
IisContr : (i : I) * ((j : I) -> Path (\i -> I) i j)
= (i0, contrI)
in let
compPath : (A : I -> Type)
(phi : I) (u : (i : I) -> Partial phi (A i))
-> (a0 : Sub (A i0) phi (u i0)) -> Path A a0 (comp A phi u a0)
= \A phi u a0 j -> fill j A phi u a0
in compPath -}
let
fill : (i : I) (A : I -> Type)
(phi : I) (u : (i : I) -> Partial phi (A i))
-> Sub (A i0) phi (u i0) -> A i
= \i A phi u a0 ->
comp (\j -> A (i && j)) (phi || ~i) (\j -> [ phi -> u (i && j), ~i -> a0 ]) a0
in
let
pres : (A : I -> Type)
(T : I -> Type)
(f : (i : I) -> T i -> A i)
(phi : I)
(t : (i : I) -> Partial phi (T i))
(t0 : Sub (T i0) phi (t i0))
-> (let c1 : A i1 = comp A phi (\j -> [phi -> f j (t j)]) (f i0 t0) in
let c2 : A i1 = f i1 (comp T phi (\j -> [phi -> t j]) t0) in
Sub (Path (\i -> A i1) c1 c2) phi (\j -> f i1 (t i1)))
= \A T f phi t t0 j ->
let v : (i : I) -> T i = \i -> fill i T phi (\j -> [phi -> t j]) t0
in comp A (phi || j) (\u -> [phi || j -> f u (v u)]) (f i0 t0)
in pres

Loading…
Cancel
Save