less prototype, less bad code implementation of CCHM type theory
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

498 lines
16 KiB

{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE ViewPatterns #-}
module Elab.Eval where
import Control.Monad.Reader
import Control.Exception
import qualified Data.Map.Strict as Map
import qualified Data.Sequence as Seq
import qualified Data.Set as Set
import qualified Data.Text as T
import Data.Sequence (Seq)
import Data.Traversable
import Data.Set (Set)
import Data.Typeable
import Data.Foldable
import Data.IORef
import Data.Maybe
import Elab.Eval.Formula
import Elab.Monad
import GHC.Stack
import Presyntax.Presyntax (Plicity(..))
import Prettyprinter
import Syntax.Pretty
import Syntax
import System.IO.Unsafe
import {-# SOURCE #-} Elab.WiredIn
eval :: Term -> ElabM Value
eval t = asks (flip eval' t)
forceIO :: MonadIO m => Value -> m Value
forceIO mv@(VNe (HMeta (MV _ cell)) args) = do
solved <- liftIO $ readIORef cell
case solved of
Just vl -> forceIO $ foldl applProj vl args
Nothing -> pure mv
forceIO vl@(VSystem fs) =
case Map.lookup VI1 fs of
Just x -> forceIO x
Nothing -> pure vl
forceIO (VComp line phi u a0) = comp line <$> forceIO phi <*> pure u <*> pure a0
forceIO x = pure x
applProj :: Value -> Projection -> Value
applProj fun (PApp p arg) = vApp p fun arg
applProj fun (PIElim l x y i) = ielim l x y fun i
applProj fun (POuc a phi u) = outS a phi u fun
applProj fun PProj1 = vProj1 fun
applProj fun PProj2 = vProj2 fun
force :: Value -> Value
force = unsafePerformIO . forceIO
-- everywhere force
zonkIO :: Value -> IO Value
zonkIO (VNe hd sp) = do
sp' <- traverse zonkSp sp
case hd of
HMeta (MV _ cell) -> do
solved <- liftIO $ readIORef cell
case solved of
Just vl -> zonkIO $ foldl applProj vl sp'
Nothing -> pure $ VNe hd sp'
hd -> pure $ VNe hd sp'
where
zonkSp (PApp p x) = PApp p <$> zonkIO x
zonkSp (PIElim l x y i) = PIElim <$> zonkIO l <*> zonkIO x <*> zonkIO y <*> zonkIO i
zonkSp (POuc a phi u) = POuc <$> zonkIO a <*> zonkIO phi <*> zonkIO u
zonkSp PProj1 = pure PProj1
zonkSp PProj2 = pure PProj2
zonkIO (VLam p (Closure s k)) = pure $ VLam p (Closure s (zonk . k))
zonkIO (VPi p d (Closure s k)) = VPi p <$> zonkIO d <*> pure (Closure s (zonk . k))
zonkIO (VSigma d (Closure s k)) = VSigma <$> zonkIO d <*> pure (Closure s (zonk . k))
zonkIO (VPair a b) = VPair <$> zonkIO a <*> zonkIO b
zonkIO (VPath line x y) = VPath <$> zonkIO line <*> zonkIO x <*> zonkIO y
zonkIO (VLine line x y f) = VLine <$> zonkIO line <*> zonkIO x <*> zonkIO y <*> zonkIO f
-- Sorts
zonkIO VType = pure VType
zonkIO VTypeω = pure VTypeω
zonkIO VI = pure VI
zonkIO VI0 = pure VI0
zonkIO VI1 = pure VI1
zonkIO (VIAnd x y) = iand <$> zonkIO x <*> zonkIO y
zonkIO (VIOr x y) = ior <$> zonkIO x <*> zonkIO y
zonkIO (VINot x) = inot <$> zonkIO x
zonkIO (VIsOne x) = VIsOne <$> zonkIO x
zonkIO (VIsOne1 x) = VIsOne1 <$> zonkIO x
zonkIO (VIsOne2 x) = VIsOne2 <$> zonkIO x
zonkIO VItIsOne = pure VItIsOne
zonkIO (VPartial x y) = VPartial <$> zonkIO x <*> zonkIO y
zonkIO (VPartialP x y) = VPartialP <$> zonkIO x <*> zonkIO y
zonkIO (VSystem fs) = do
t <- for (Map.toList fs) $ \(a, b) -> (,) <$> zonkIO a <*> zonkIO b
pure (mkVSystem (Map.fromList t))
zonkIO (VSub a b c) = VSub <$> zonkIO a <*> zonkIO b <*> zonkIO c
zonkIO (VInc a b c) = VInc <$> zonkIO a <*> zonkIO b <*> zonkIO c
zonkIO (VComp a b c d) = comp <$> zonkIO a <*> zonkIO b <*> zonkIO c <*> zonkIO d
zonkIO (VGlueTy a phi ty e) = glueType <$> zonkIO a <*> zonkIO phi <*> zonkIO ty <*> zonkIO e
zonkIO (VGlue a phi ty e t x) = glueElem <$> zonkIO a <*> zonkIO phi <*> zonkIO ty <*> zonkIO e <*> zonkIO t <*> zonkIO x
zonkIO (VUnglue a phi ty e x) = unglue <$> zonkIO a <*> zonkIO phi <*> zonkIO ty <*> zonkIO e <*> zonkIO x
zonkIO VBool = pure VBool
zonkIO VTt = pure VTt
zonkIO VFf = pure VFf
zonkIO (VIf a b c d) = elimBool <$> zonkIO a <*> zonkIO b <*> zonkIO c <*> zonkIO d
mkVSystem :: Map.Map Value Value -> Value
mkVSystem map =
case Map.lookup VI1 map of
Just x -> x
Nothing -> VSystem (Map.filterWithKey (\k _ -> k /= VI0) map)
zonk :: Value -> Value
zonk = unsafePerformIO . zonkIO
eval' :: ElabEnv -> Term -> Value
eval' env (Ref x) =
case Map.lookup x (getEnv env) of
Just (_, vl) -> vl
_ -> VNe (HVar x) mempty
eval' env (App p f x) = vApp p (eval' env f) (eval' env x)
eval' env (Lam p s t) =
VLam p $ Closure s $ \a ->
eval' env { getEnv = Map.insert s (error "type of abs", a) (getEnv env) } t
eval' env (Pi p s d t) =
VPi p (eval' env d) $ Closure s $ \a ->
eval' env { getEnv = (Map.insert s (error "type of abs", a) (getEnv env))} t
eval' _ (Meta m) = VNe (HMeta m) mempty
eval' env (Sigma s d t) =
VSigma (eval' env d) $ Closure s $ \a ->
eval' env { getEnv = Map.insert s (error "type of abs", a) (getEnv env) } t
eval' e (Pair a b) = VPair (eval' e a) (eval' e b)
eval' e (Proj1 a) = vProj1 (eval' e a)
eval' e (Proj2 a) = vProj2 (eval' e a)
eval' _ Type = VType
eval' _ Typeω = VTypeω
eval' _ I = VI
eval' _ I0 = VI0
eval' _ I1 = VI1
eval' e (IAnd x y) = iand (eval' e x) (eval' e y)
eval' e (IOr x y) = ior (eval' e x) (eval' e y)
eval' e (INot x) = inot (eval' e x)
eval' e (PathP l a b) = VPath (eval' e l) (eval' e a) (eval' e b)
eval' e (IElim l x y f i) = ielim (eval' e l) (eval' e x) (eval' e y) (eval' e f) (eval' e i)
eval' e (PathIntro p x y f) = VLine (eval' e p) (eval' e x) (eval' e y) (eval' e f)
eval' e (IsOne i) = VIsOne (eval' e i)
eval' e (IsOne1 i) = VIsOne1 (eval' e i)
eval' e (IsOne2 i) = VIsOne2 (eval' e i)
eval' _ ItIsOne = VItIsOne
eval' e (Partial x y) = VPartial (eval' e x) (eval' e y)
eval' e (PartialP x y) = VPartialP (eval' e x) (eval' e y)
eval' e (System fs) = VSystem (Map.fromList $ map (\(x, y) -> (eval' e x, eval' e y)) $ Map.toList $ fs)
eval' e (Sub a phi u) = VSub (eval' e a) (eval' e phi) (eval' e u)
eval' e (Inc a phi u) = VInc (eval' e a) (eval' e phi) (eval' e u)
eval' e (Ouc a phi u x) = outS (eval' e a) (eval' e phi) (eval' e u) (eval' e x)
eval' e (Comp a phi u a0) = comp (eval' e a) (eval' e phi) (eval' e u) (eval' e a0)
eval' e (GlueTy a phi tys f) = glueType (eval' e a) (eval' e phi) (eval' e tys) (eval' e f)
eval' e (Glue a phi tys eqvs t x) = glueElem (eval' e a) (eval' e phi) (eval' e tys) (eval' e eqvs) (eval' e t) (eval' e x)
eval' e (Unglue a phi tys f x) = unglue (eval' e a) (eval' e phi) (eval' e tys) (eval' e f) (eval' e x)
eval' e (Let ns x) =
let env' = foldl (\newe (n, ty, x) -> newe { getEnv = Map.insert n (eval' newe ty, eval' newe x) (getEnv newe) }) e ns
in eval' env' x
eval' e (If a b c d) = elimBool (eval' e a) (eval' e b) (eval' e c) (eval' e d)
eval' _ Bool = VBool
eval' _ Tt = VTt
eval' _ Ff = VFf
vApp :: HasCallStack => Plicity -> Value -> Value -> Value
vApp p (VLam p' k) arg
| p == p' = clCont k arg
| otherwise = error $ "wrong plicity " ++ show p ++ " vs " ++ show p' ++ " in app " ++ show (App p (quote (VLam p' k)) (quote arg))
vApp p (VNe h sp) arg = VNe h (sp Seq.:|> PApp p arg)
vApp p (VSystem fs) arg = VSystem (fmap (flip (vApp p) arg) fs)
vApp _ x _ = error $ "can't apply " ++ show (prettyTm (quote x))
(@@) :: HasCallStack => Value -> Value -> Value
(@@) = vApp Ex
infixl 9 @@
vProj1 :: HasCallStack => Value -> Value
vProj1 (VPair a _) = a
vProj1 (VNe h sp) = VNe h (sp Seq.:|> PProj1)
vProj1 (VSystem fs) = VSystem (fmap vProj1 fs)
vProj1 x = error $ "can't proj1 " ++ show (prettyTm (quote x))
vProj2 :: HasCallStack => Value -> Value
vProj2 (VPair _ b) = b
vProj2 (VNe h sp) = VNe h (sp Seq.:|> PProj2)
vProj2 (VSystem fs) = VSystem (fmap vProj2 fs)
vProj2 x = error $ "can't proj2 " ++ show (prettyTm (quote x))
data NotEqual = NotEqual Value Value
deriving (Show, Typeable, Exception)
unify' :: HasCallStack => Value -> Value -> ElabM ()
unify' topa topb = join $ go <$> forceIO topa <*> forceIO topb where
go (VNe (HMeta mv) sp) rhs = solveMeta mv sp rhs
go rhs (VNe (HMeta mv) sp) = solveMeta mv sp rhs
go (VNe x a) (VNe x' a')
| x == x', length a == length a' =
traverse_ (uncurry unify'Spine) (Seq.zip a a')
go lhs@(VNe _hd (_ Seq.:|> PIElim _l x y i)) rhs =
case force i of
VI0 -> unify' x rhs
VI1 -> unify' y rhs
_ -> case rhs of
VSystem sys -> goSystem (flip unify') sys lhs
_ -> fail
go lhs rhs@(VNe _hd (_ Seq.:|> PIElim _l x y i)) =
case force i of
VI0 -> unify' lhs x
VI1 -> unify' lhs y
_ -> case lhs of
VSystem sys -> goSystem unify' sys rhs
_ -> fail
go (VLam p (Closure _ k)) vl = do
t <- VVar <$> newName
unify' (k t) (vApp p vl t)
go vl (VLam p (Closure _ k)) = do
t <- VVar <$> newName
unify' (vApp p vl t) (k t)
go (VPair a b) vl = unify' a (vProj1 vl) *> unify' b (vProj2 vl)
go vl (VPair a b) = unify' (vProj1 vl) a *> unify' (vProj2 vl) b
go (VPi p d (Closure _ k)) (VPi p' d' (Closure _ k')) | p == p' = do
t <- VVar <$> newName
unify' d d'
unify' (k t) (k' t)
go (VSigma d (Closure _ k)) (VSigma d' (Closure _ k')) = do
t <- VVar <$> newName
unify' d d'
unify' (k t) (k' t)
go VType VType = pure ()
go VTypeω VTypeω = pure ()
go VI VI = pure ()
go (VPath l x y) (VPath l' x' y') = do
unify' l l'
unify' x x'
unify' y y'
go (VLine l x y p) p' = do
n <- VVar <$> newName
unify' (p @@ n) (ielim l x y p' n)
go p' (VLine l x y p) = do
n <- VVar <$> newName
unify' (ielim l x y p' n) (p @@ n)
go (VIsOne x) (VIsOne y) = unify' x y
-- IsOne is proof-irrelevant:
go VItIsOne _ = pure ()
go _ VItIsOne = pure ()
go VIsOne1{} _ = pure ()
go _ VIsOne1{} = pure ()
go VIsOne2{} _ = pure ()
go _ VIsOne2{} = pure ()
go (VPartial phi r) (VPartial phi' r') = unify' phi phi' *> unify' r r'
go (VPartialP phi r) (VPartialP phi' r') = unify' phi phi' *> unify' r r'
go (VSub a phi u) (VSub a' phi' u') = traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u')]
go (VInc a phi u) (VInc a' phi' u') = traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u')]
go (VComp a phi u a0) (VComp a' phi' u' a0') =
traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u'), (a0, a0')]
go (VGlueTy _ VI1 u _0) rhs = unify' (u @@ VItIsOne) rhs
go lhs (VGlueTy _ VI1 u _0) = unify' lhs (u @@ VItIsOne)
go (VGlueTy a phi u a0) (VGlueTy a' phi' u' a0') =
traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u'), (a0, a0')]
go (VGlue a phi u a0 t x) (VGlue a' phi' u' a0' t' x') =
traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u'), (a0, a0'), (t, t'), (x, x')]
go (VSystem sys) rhs = goSystem unify' sys rhs
go rhs (VSystem sys) = goSystem (flip unify') sys rhs
go VTt VTt = pure ()
go VFf VFf = pure ()
go VBool VBool = pure ()
go x y
| x == y = pure ()
| otherwise =
case (toDnf x, toDnf y) of
(Just xs, Just ys) -> unify'Formula xs ys
_ -> fail
goSystem :: (Value -> Value -> ElabM ()) -> Map.Map Value Value -> Value -> ElabM ()
goSystem k sys rhs = do
let rhs_q = quote rhs
env <- ask
for_ (Map.toList sys) $ \(f, i) -> do
let i_q = quote i
for (truthAssignments f (getEnv env)) $ \e ->
k (eval' env{getEnv = e} i_q) (eval' env{getEnv = e} rhs_q)
fail = throwElab $ NotEqual topa topb
unify'Spine (PApp a v) (PApp a' v')
| a == a' = unify' v v'
unify'Spine PProj1 PProj1 = pure ()
unify'Spine PProj2 PProj2 = pure ()
unify'Spine (PIElim _ _ _ i) (PIElim _ _ _ j) = unify' i j
unify'Spine (POuc a phi u) (POuc a' phi' u') =
traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u')]
unify'Spine _ _ = fail
unify'Formula x y
| compareDNFs x y = pure ()
| otherwise = fail
unify :: HasCallStack => Value -> Value -> ElabM ()
unify a b = unify' a b `catchElab` \(_ :: NotEqual) -> liftIO $ throwIO (NotEqual a b)
isConvertibleTo :: Value -> Value -> ElabM (Term -> Term)
isConvertibleTo a b = isConvertibleTo (force a) (force b) where
VPi Im d (Closure _v k) `isConvertibleTo` ty = do
meta <- newMeta d
cont <- k meta `isConvertibleTo` ty
pure (\f -> cont (App Im f (quote meta)))
VType `isConvertibleTo` VTypeω = pure id
VPi p d (Closure _ k) `isConvertibleTo` VPi p' d' (Closure _ k') | p == p' = do
wp <- d' `isConvertibleTo` d
n <- newName
wp_n <- eval (Lam Ex n (wp (Ref n)))
wp' <- k (VVar n) `isConvertibleTo` k' (wp_n @@ VVar n)
pure (\f -> Lam p n (wp' (App p f (wp (Ref n)))))
isConvertibleTo a b = do
unify' a b
pure id
newMeta :: Value -> ElabM Value
newMeta _dom = do
n <- newName
c <- liftIO $ newIORef Nothing
let m = MV (getNameText n) c
env <- asks getEnv
t <- for (Map.toList env) $ \(n, _) -> pure $
case n of
Bound{} -> Just (PApp Ex (VVar n))
_ -> Nothing
pure (VNe (HMeta m) (Seq.fromList (catMaybes t)))
newName :: MonadIO m => m Name
newName = liftIO $ do
x <- atomicModifyIORef _nameCounter $ \x -> (x + 1, x + 1)
pure (Bound (T.pack (show x)) x)
_nameCounter :: IORef Int
_nameCounter = unsafePerformIO $ newIORef 0
{-# NOINLINE _nameCounter #-}
solveMeta :: MV -> Seq Projection -> Value -> ElabM ()
solveMeta m@(MV _ cell) sp rhs = do
env <- ask
names <- checkSpine Set.empty sp
checkScope (Set.fromList names) rhs
`withNote` hsep [prettyTm (quote (VNe (HMeta m) sp)), pretty '≡', prettyTm (quote rhs)]
let tm = quote rhs
lam = eval' env $ foldr (Lam Ex) tm names
liftIO . atomicModifyIORef' cell $ \case
Just _ -> error "filled cell in solvedMeta"
Nothing -> (Just lam, ())
checkScope :: Set Name -> Value -> ElabM ()
checkScope scope (VNe h sp) =
do
case h of
HVar v@Bound{} ->
unless (v `Set.member` scope) . throwElab $
NotInScope v
HVar{} -> pure ()
HMeta{} -> pure ()
traverse_ checkProj sp
where
checkProj (PApp _ t) = checkScope scope t
checkProj (PIElim l x y i) = traverse_ (checkScope scope) [l, x, y, i]
checkProj (POuc a phi u) = traverse_ (checkScope scope) [a, phi, u]
checkProj PProj1 = pure ()
checkProj PProj2 = pure ()
checkScope scope (VLam _ (Closure n k)) =
checkScope (Set.insert n scope) (k (VVar n))
checkScope scope (VPi _ d (Closure n k)) = do
checkScope scope d
checkScope (Set.insert n scope) (k (VVar n))
checkScope scope (VSigma d (Closure n k)) = do
checkScope scope d
checkScope (Set.insert n scope) (k (VVar n))
checkScope s (VPair a b) = traverse_ (checkScope s) [a, b]
checkScope _ VType = pure ()
checkScope _ VTypeω = pure ()
checkScope _ VI = pure ()
checkScope _ VI0 = pure ()
checkScope _ VI1 = pure ()
checkScope s (VIAnd x y) = traverse_ (checkScope s) [x, y]
checkScope s (VIOr x y) = traverse_ (checkScope s) [x, y]
checkScope s (VINot x) = checkScope s x
checkScope s (VPath line a b) = traverse_ (checkScope s) [line, a, b]
checkScope s (VLine _ _ _ line) = checkScope s line
checkScope s (VIsOne x) = checkScope s x
checkScope s (VIsOne1 x) = checkScope s x
checkScope s (VIsOne2 x) = checkScope s x
checkScope _ VItIsOne = pure ()
checkScope s (VPartial x y) = traverse_ (checkScope s) [x, y]
checkScope s (VPartialP x y) = traverse_ (checkScope s) [x, y]
checkScope s (VSystem fs) =
for_ (Map.toList fs) $ \(x, y) -> traverse_ (checkScope s) [x, y]
checkScope s (VSub a b c) = traverse_ (checkScope s) [a, b, c]
checkScope s (VInc a b c) = traverse_ (checkScope s) [a, b, c]
checkScope s (VComp a phi u a0) = traverse_ (checkScope s) [a, phi, u, a0]
checkScope s (VGlueTy a phi ty eq) = traverse_ (checkScope s) [a, phi, ty, eq]
checkScope s (VGlue a phi ty eq inv x) = traverse_ (checkScope s) [a, phi, ty, eq, inv, x]
checkScope s (VUnglue a phi ty eq vl) = traverse_ (checkScope s) [a, phi, ty, eq, vl]
checkScope s (VIf a b c d) = traverse_ (checkScope s) [a, b, c, d]
checkScope _ VBool = pure ()
checkScope _ VTt = pure ()
checkScope _ VFf = pure ()
checkSpine :: Set Name -> Seq Projection -> ElabM [Name]
checkSpine scope (PApp Ex (VVar n@Bound{}) Seq.:<| xs)
| n `Set.member` scope = throwElab $ NonLinearSpine n
| otherwise = (n:) <$> checkSpine scope xs
checkSpine _ (p Seq.:<| _) = throwElab $ SpineProj p
checkSpine _ Seq.Empty = pure []
newtype NonLinearSpine = NonLinearSpine { getDupeName :: Name }
deriving (Show, Typeable, Exception)
newtype SpineProjection = SpineProj { getSpineProjection :: Projection }
deriving (Show, Typeable, Exception)