Amélia Liao 2 years ago
parent
commit
b1478b6768
8 changed files with 622 additions and 156 deletions
  1. +1
    -9
      cubical.cabal
  2. +553
    -76
      intro.tt
  3. +8
    -8
      src/Elab/Eval.hs
  4. +6
    -9
      src/Elab/WiredIn.hs
  5. +3
    -3
      src/Main.hs
  6. +1
    -1
      src/Presyntax/Lexer.x
  7. +47
    -47
      src/Syntax.hs
  8. +3
    -3
      src/Syntax/Pretty.hs

+ 1
- 9
cubical.cabal View File

@ -13,11 +13,6 @@ build-type: Simple
cabal-version: >=2.0
extra-source-files: README.md
flag release
description: "Release" mode
manual: True
default: False
executable cubical
hs-source-dirs: src
main-is: Main.hs
@ -56,7 +51,4 @@ executable cubical
build-tool-depends: alex:alex >= 3.2.4 && < 4.0
, happy:happy >= 1.19.12 && < 2.0
ghc-options: -Wall -Wextra -Wno-name-shadowing -rtsopts
if flag(release)
ghc-options: -XCPP -DRELEASE
ghc-options: -Wall -Wextra -Wno-name-shadowing -rtsopts

+ 553
- 76
intro.tt View File

@ -110,8 +110,28 @@ isContr A = (x : A) * ((y : A) -> Path x y)
-- Using the connection \i j -> y.2 (iand i j), we can prove that
-- singletons are contracible. Together with transport later on,
-- we get the J elimination principle of paths.
dropJ : {A : Type} {x : A} {y : A} (p : Path x y)
-> PathP (\i -> Path (p i) (p i)) refl refl
dropJ p i j = p i
dropI : {A : Type} {x : A} {y : A} (p : Path x y)
-> PathP (\i -> Path x y) p p
dropI p i j = p j
and : {A : Type} {x : A} {y : A} (p : Path x y)
-> PathP (\i -> Path x (p i)) refl p
and p i j = p (iand i j)
or : {A : Type} {x : A} {y : A} (p : Path x y)
-> PathP (\i -> Path (p i) y) p refl
or p i j = p (ior i j)
singContr : {A : Type} {a : A} -> isContr (Singl A a)
singContr = ((a, \i -> a), \y i -> (y.2 i, \j -> y.2 (iand i j)))
singContr = ((a, \i -> a), contr) where
contr : (y : Singl A a) -> PathP (\i -> Singl A a) (a, \i -> a) y
contr y i = (y.2 i, and y.2 i)
-- Some more operations on paths. By rearranging parentheses we get a
-- proof that the images of equal elements are themselves equal.
@ -298,6 +318,22 @@ transFiller : {A : Type} {x : A} {y : A} {z : A}
-> PathP (\i -> Path x (q i)) p (trans {A} {x} {y} {z} p q)
transFiller p q j i = hfill (\k [ (i = i0) -> x, (i = i1) -> q k ]) (inS (p i)) j
transFiller' : {A : Type} {x : A} {y : A} {z : A}
-> (p : Path x y) (q : Path y z)
-> PathP (\i -> Path (p (inot i)) z) q (trans {A} {x} {y} {z} p q)
transFiller' p q j i = hcomp (\k [ (i = i0) -> p (inot j)
, (i = i1) -> q k
, (j = i0) -> q (iand i k) ])
(inS (p (ior i (inot j))))
transAssoc : {A : Type} {w : A} {x : A} {y : A} {z : A} (p : Path w x) (q : Path x y) (r : Path y z)
-> Path (trans p (trans q r)) (trans (trans p q) r)
transAssoc p q r k = trans (transFiller p q k) (transFiller' q r (inot k))
dubcomp : {A : Type} {a : A} {b : A} {c : A} {d : A}
-> Path a b -> Path b c -> Path c d -> Path a d
dubcomp p q r i = hcomp (\j [ (i = i0) -> p (inot j), (i = i1) -> r j ]) (inS (q i))
-- For instance, the filler of the previous composition square
-- tells us that trans p refl = p:
@ -697,14 +733,14 @@ trueNotFalse p = transp (\i -> if (Bool -> Bool) Bottom (p i)) id
-- To be an h-Set is to have no "higher path information". Alternatively,
--
-- isHSet A = (x : A) (y : A) -> isHProp (Path x y)
-- isSet A = (x : A) (y : A) -> isHProp (Path x y)
--
isProp : Type -> Type
isProp A = (x : A) (y : A) -> Path x y
isHSet : Type -> Type
isHSet A = (x : A) (y : A) -> isProp (Path x y)
isSet : Type -> Type
isSet A = (x : A) (y : A) -> isProp (Path x y)
-- We can prove *a* contradiction (note: this is a direct proof!) by adversarially
-- choosing two paths p, q that we know are not equal. Since "equal" paths have
@ -714,7 +750,7 @@ isHSet A = (x : A) (y : A) -> isProp (Path x y)
-- Since transp notp = not but transp refl = id, that's what we go with. The choice
-- of false as the point x is just from the endpoints of trueNotFalse.
universeNotSet : isHSet Type -> Bottom
universeNotSet : isSet Type -> Bottom
universeNotSet itIs = trueNotFalse (\i -> transp (\j -> itIs Bool Bool notp refl i j) false)
-- Funext is an inverse of happly
@ -772,12 +808,13 @@ zeroNotSucc p = transp (\i -> fun (p i)) (p i0) where
zero -> Nat
succ x -> Bottom
pred : Nat -> Nat
pred = \case
zero -> zero
succ x -> x
succInj : {x : Nat} {y : Nat} -> Path (succ x) (succ y) -> Path x y
succInj p i = pred (p i) where
pred : Nat -> Nat
pred = \case
zero -> zero
succ x -> x
succInj p i = pred (p i)
-- The type of integers can be defined as A + B, where "pos n" means +n
-- and "neg n" means -(n + 1).
@ -894,8 +931,11 @@ helix = \case
loopP : Path base base
loopP i = loop i
encode : (x : S1) -> Path base x -> helix x
encode x p = subst helix p (pos zero)
winding : Path base base -> Int
winding p = transp (\i -> helix (p i)) (pos zero)
winding = encode base
-- For instance, going around the loop once has a winding number of +1,
@ -917,17 +957,20 @@ windingBase = refl
goAround : Int -> Path base base
goAround =
\case
pos n -> forwards n
neg n -> backwards n
where
forwards : Nat -> Path base base
forwards = \case
zero -> refl
succ n -> trans (goAround (pos n)) (\i -> loop i)
backwards : Nat -> Path base base
backwards = \case
zero -> \i -> loop (inot i)
succ n -> trans (goAround (neg n)) (\i -> loop (inot i))
pos n ->
let
forwards : Nat -> Path base base
forwards = \case
zero -> refl
succ n -> trans (goAround (pos n)) (\i -> loop i)
in forwards n
neg n ->
let
backwards : Nat -> Path base base
backwards = \case
zero -> \i -> loop (inot i)
succ n -> trans (goAround (neg n)) (\i -> loop (inot i))
in backwards n
windingGoAround : (n : Int) -> Path (winding (goAround n)) n
windingGoAround =
@ -944,15 +987,40 @@ windingGoAround =
zero -> refl
succ n -> ap predZ (negCase n)
decodeSquare : (n : Int) -> PathP (\i -> Path base (loop i)) (goAround (predZ n)) (goAround n)
decodeSquare = \case
pos n -> posCase n
neg n -> \i j -> hfill (\k [ (j = i1) -> loop (inot k), (j = i0) -> base ]) (inS (goAround (neg n) j)) (inot i)
where
posCase : (n : Nat) -> PathP (\i -> Path base (loop i)) (goAround (predZ (pos n))) (goAround (pos n))
posCase = \case
zero -> \i j -> loop (ior i (inot j))
succ n -> \i j -> hfill (\k [ (j = i1) -> loop k, (j = i0) -> base ]) (inS (goAround (pos n) j)) i
decode : (x : S1) -> helix x -> Path base x
decode = go decodeSquare where
decodeSquare : (n : Int) -> PathP (\i -> Path base (loop i)) (goAround (predZ n)) (goAround n)
decodeSquare =
\case
pos n -> posCase n
neg n -> \i j -> hfill (\k [ (j = i1) -> loop (inot k), (j = i0) -> base ]) (inS (goAround (neg n) j)) (inot i)
where
posCase : (n : Nat) -> PathP (\i -> Path base (loop i)) (goAround (predZ (pos n))) (goAround (pos n))
posCase = \case
zero -> \i j -> loop (ior i (inot j))
succ n -> \i j -> hfill (\k [ (j = i1) -> loop k, (j = i0) -> base ]) (inS (goAround (pos n) j)) i
go : ((n : Int) -> PathP (\i -> Path base (loop i)) (goAround (predZ n)) (goAround n))
-> (x : S1) -> helix x -> Path base x
go decodeSquare = \case
base -> goAround
loop i -> \y j ->
let n : Int
n = primUnglue {Int} {ior i (inot i)} {\o -> Int} {\[ (i = i1) -> idEquiv, (i = i0) -> sucEquiv ]} y
in hcomp (\k [ (i = i0) -> goAround (predSucZ y k) j
, (i = i1) -> goAround y j
, (j = i0) -> base
, (j = i1) -> loop i ])
(inS (decodeSquare n i j))
decodeWinding : (x : S1) (p : Path base x) -> Path (decode x (encode x p)) p
decodeWinding x p = J (\y q -> Path (decode y (encode y q)) q) (\ i -> refl) p
loopS1IsoInt : Iso (Path base base) Int
loopS1IsoInt = (winding, goAround, windingGoAround, decodeWinding base)
LoopS1IsInt : Path (Path base base) Int
LoopS1IsInt = IsoToId loopS1IsoInt
-- One particularly general higher inductive type is the homotopy pushout,
-- which can be seen as a kind of sum B + C with the extra condition that
@ -963,8 +1031,19 @@ data Pushout {A : Type} {B : Type} {C : Type} (f : A -> B) (g : A -> C) : Type w
inr : (y : C) -> Pushout f g
push i : (a : A) -> Pushout f g [ (i = i0) -> inl (f a), (i = i1) -> inr (g a) ]
-- The name is due to the category-theoretical notion of pushout.
-- TODO: finish writing this tomorrow lol
Coproduct : Type -> Type -> Type
Coproduct A B = Pushout {Bottom} {A} {B} absurd absurd
Pushout_rec : {A : Type} {B : Type} {C : Type} {f : A -> B} {g : A -> C}
-> (P : Pushout f g -> Type)
-> (fc : (x : B) -> P (inl x))
-> (gc : (x : C) -> P (inr x))
-> ((a : A) -> PathP (\i -> P (push a i)) (fc (f a)) (gc (g a)))
-> (c : Pushout f g) -> P c
Pushout_rec P fc gc pc = \case
inl x -> fc x
inr y -> gc y
push c i -> pc c i
data Susp (A : Type) : Type where
north : Susp A
@ -980,6 +1059,11 @@ unitEta = \case tt -> refl
unitContr : isContr Unit
unitContr = (tt, \x -> sym (unitEta x))
unitProp : isProp Unit
unitProp = \case
tt -> \case
tt -> refl
poSusp : Type -> Type
poSusp A = Pushout {A} {Unit} {Unit} (\x -> tt) (\x -> tt)
@ -1093,6 +1177,15 @@ boolAnd = \case
true -> false
false -> false
boolXor : Bool -> Bool -> Bool
boolXor = \case
true -> \case
true -> false
false -> true
false -> \case
false -> false
true -> true
plusNat : Nat -> Nat -> Nat
plusNat = \case
zero -> \x -> x
@ -1109,7 +1202,7 @@ multNat = \case
succ n -> \x -> plusNat x (multNat n x)
multInt : Int -> Int -> Int
multInt x y = signify (multNat (abs x) (abs y)) (boolAnd (sign x) (sign y)) where
multInt x y = signify (multNat (abs x) (abs y)) (not (boolXor (sign x) (sign y))) where
signify : Nat -> Bool -> Int
signify = \case
zero -> \x -> pos zero
@ -1133,7 +1226,7 @@ data Sq (A : Type) : Type where
inc : A -> Sq A
sq i : (x : Sq A) (y : Sq A) -> Sq A [ (i = i0) -> x, (i = i1) -> y ]
isProp_isSet : {A : Type} -> isProp A -> isHSet A
isProp_isSet : {A : Type} -> isProp A -> isSet A
isProp_isSet h a b p q j i =
hcomp {A}
(\k [ (i = i0) -> h a a k
@ -1143,9 +1236,15 @@ isProp_isSet h a b p q j i =
])
(inS a)
unitSet : isSet Unit
unitSet = isProp_isSet unitProp
isProp_isProp : {A : Type} -> isProp (isProp A)
isProp_isProp f g i a b = isProp_isSet f a b (f a b) (g a b) i
isSet_isProp : {A : Type} -> isProp (isSet A)
isSet_isProp f g i x y = isProp_isProp {_} (f x y) (g x y) i
isProp_isContr : {A : Type} -> isProp (isContr A)
isProp_isContr {A} z0 z1 j =
( z0.2 z1.1 j
@ -1159,6 +1258,12 @@ isProp_isContr {A} z0 z1 j =
isContr_isProp : {A : Type} -> isContr A -> isProp A
isContr_isProp x a b i = hcomp (\k [ (i = i0) -> x.2 a k, (i = i1) -> x.2 b k ]) (inS x.1)
isSet_prod : {A : Type} {B : Type} -> isSet A -> isSet B -> isSet (A * B)
isSet_prod a b x y p q i j = (a x.1 y.1 (\i -> (p i).1) (\i -> (q i).1) i j, b x.2 y.2 (\i -> (p i).2) (\i -> (q i).2) i j)
isSet_pi : {A : Type} {B : A -> Type} -> ((x : A) -> isSet (B x)) -> isSet ((x : A) -> B x)
isSet_pi rng a b p q i j z = rng z (a z) (b z) (happly p z) (happly q z) i j
sigmaPath : {A : Type} {B : A -> Type} {s1 : (x : A) * B x} {s2 : (x : A) * B x}
-> (p : Path s1.1 s2.1)
-> PathP (\i -> B (p i)) s1.2 s2.2
@ -1314,17 +1419,18 @@ pathToEqS_K p_to_s P pr loop = transp (\i -> P (inv x loop i)) psloop where
aux : Eq_s (strictEq_pathEq (p_to_s (\i -> x))) (\i -> x)
aux = seq_pathRefl (p_to_s (\i -> x))
pathToEq_isSet : {A : Type} -> ({x : A} {y : A} -> Path x y -> Eq_s x y) -> isHSet A
pathToEq_isSet p_to_s = axK_to_isSet {A} (\{x} -> pathToEqS_K {A} {x} p_to_s) where
axK_to_isSet : {A : Type} -> ({x : A} -> (P : Path x x -> Type) -> P refl -> (p : Path x x) -> P p) -> isHSet A
axK_to_isSet K x y p q = J (\y p -> (q : Path x y) -> Path p q) (uipRefl x) p q where
uipRefl : (x : A) (p : Path x x) -> Path refl p
uipRefl x p = K {x} (\q -> Path refl q) refl p
axK_to_isSet : {A : Type} -> ({x : A} -> (P : Path x x -> Type) -> P refl -> (p : Path x x) -> P p) -> isSet A
axK_to_isSet K x y p q = J (\y p -> (q : Path x y) -> Path p q) (uipRefl x) p q where
uipRefl : (x : A) (p : Path x x) -> Path refl p
uipRefl x p = K {x} (\q -> Path refl q) refl p
Nat_isSet : isHSet Nat
pathToEq_isSet : {A : Type} -> ({x : A} {y : A} -> Path x y -> Eq_s x y) -> isSet A
pathToEq_isSet p_to_s = axK_to_isSet {A} (\{x} -> pathToEqS_K {A} {x} p_to_s)
Nat_isSet : isSet Nat
Nat_isSet = pathToEq_isSet {Nat} (\{x} {y} -> Path_nat_strict_nat x y)
Bool_isSet : isHSet Bool
Bool_isSet : isSet Bool
Bool_isSet = pathToEq_isSet {Bool} (\{x} {y} -> p x y) where
p : (x : Bool) (y : Bool) -> Path x y -> Eq_s x y
p = \case
@ -1362,17 +1468,16 @@ bothAreOne p q = J_s {I} {i1} (\i p -> IsOne (iand i b)) q (sym_s p)
S1Map_to_baseLoop : {X : Type} -> (S1 -> X) -> (a : X) * Path a a
S1Map_to_baseLoop f = (f base, \i -> f (loop i))
S1_univ : {X : Type} -> Path (S1 -> X) ((a : X) * Path a a)
S1_univ = IsoToId {S1 -> X} {(a : X) * Path a a} (S1Map_to_baseLoop, fro, ret, sec) where
S1_univ = IsoToId {S1 -> X} {(a : X) * Path a a} (S1Map_to_baseLoop {X}, fro, ret, sec) where
to = S1Map_to_baseLoop
fro : {X : Type} -> ((a : X) * Path a a) -> S1 -> X
fro p = \case
base -> p.1
loop i -> p.2 i
sec : {X : Type} -> (f : S1 -> X) -> Path (fro (to f)) f
sec {X} f = funext {S1} {\s -> X} {\x -> fro (to f) x} {f} h where
sec : (f : S1 -> X) -> Path (fro (to f)) f
sec f = funext {S1} {\s -> X} {\x -> fro (to f) x} {f} h where
h : (x : S1) -> Path (fro (to f) x) (f x)
h = \case
base -> refl
@ -1462,29 +1567,32 @@ isProp_isEquiv p q i y =
(inS (p2 w (ior i j)))
)
isProp_EqvSq : {P : Type} (x : Equiv P (Sq P)) (y : Equiv P (Sq P)) -> Path x y
isProp_EqvSq x y = sigmaPath x1_is_y1 (isProp_isEquiv {P} {Sq P} {y.1} (transp (\i -> isEquiv (x1_is_y1 i)) x.2) y.2) where
x1_is_y1 : Path x.1 y.1
x1_is_y1 i e = sq (x.1 e) (y.1 e) i
-- isProp_EqvSq : {P : Type} (x : Equiv P (Sq P)) (y : Equiv P (Sq P)) -> Path x y
-- isProp_EqvSq x y = sigmaPath x1_is_y1 (isProp_isEquiv {P} {Sq P} {y.1} (transp (\i -> isEquiv (x1_is_y1 i)) x.2) y.2) where
-- x1_is_y1 : Path x.1 y.1
-- x1_is_y1 i e = sq (x.1 e) (y.1 e) i
equivLemma : {A : Type} {B : Type} {e : Equiv A B} {e' : Equiv A B}
-> Path e.1 e'.1
-> Path e e'
equivLemma p = sigmaPath p (isProp_isEquiv {A} {B} {e'.1} (transp (\i -> isEquiv (p i)) e.2) e'.2)
equivLemma p = sigmaPath {A -> B} {\f -> isEquiv f} p (transp (\i -> PathP_is_Path (\i -> isEquiv (p i)) e.2 e'.2 (inot i)) (isProp_isEquiv {A} {B} {e'.1} _ _))
isProp_equiv : {P : Type} {Q : Type} -> Equiv P Q -> isProp P -> isProp Q
isProp_equiv eqv = transp (\i -> isProp (ua eqv i))
isProp_to_Sq_equiv : {P : Type} -> isProp P -> Equiv P (Sq P)
isProp_to_Sq_equiv prop = propExt prop sqProp inc proj where
proj : Sq P -> P
proj = Sq_rec prop (\x -> x)
-- isProp_to_Sq_equiv : {P : Type} -> isProp P -> Equiv P (Sq P)
-- isProp_to_Sq_equiv prop = propExt prop sqProp inc proj where
-- proj : Sq P -> P
-- proj = Sq_rec prop (\x -> x)
sqProp : isProp (Sq P)
sqProp x y i = sq x y i
-- sqProp : isProp (Sq P)
-- sqProp x y i = sq x y i
Sq_equiv_to_isProp : {P : Type} -> Equiv P (Sq P) -> isProp P
Sq_equiv_to_isProp eqv = transp (\i -> isProp (ua eqv (inot i))) (\x y i -> sq x y i)
-- Sq_equiv_to_isProp : {P : Type} -> Equiv P (Sq P) -> isProp P
-- Sq_equiv_to_isProp eqv = transp (\i -> isProp (ua eqv (inot i))) (\x y i -> sq x y i)
exercise_3_21 : {P : Type} -> Equiv (isProp P) (Equiv P (Sq P))
exercise_3_21 = propExt (isProp_isProp {P}) (isProp_EqvSq {P}) isProp_to_Sq_equiv Sq_equiv_to_isProp
-- exercise_3_21 : {P : Type} -> Equiv (isProp P) (Equiv P (Sq P))
-- exercise_3_21 = propExt (isProp_isProp {P}) (isProp_EqvSq {P}) isProp_to_Sq_equiv Sq_equiv_to_isProp
uaret : {A : Type} {B : Type} -> retract {Equiv A B} {Path A B} (ua {A} {B}) (idToEquiv {A} {B})
uaret eqv = equivLemma (uaBeta eqv)
@ -1500,15 +1608,24 @@ isContrRetract f g h v = (g b, p) where
p x i = comp (\i -> A) (\j [ (i = i0) -> g b, (i = i1) -> h x j ]) (inS (g (v.2 (f x) i)))
contrEquivSingl : {A : Type} -> isContr ((B : Type) * Equiv A B)
contrEquivSingl = isContrRetract f1 f2 uaretSig singContr where
f1 : {A : Type} -> (p : (B : Type) * Equiv A B) -> (B : Type) * Path A B
f1 p = (p.1, ua p.2)
f2 : {A : Type} -> (p : (B : Type) * Path A B) -> (B : Type) * Equiv A B
f2 p = (p.1, idToEquiv p.2)
uaretSig : {A : Type} (a : (B : Type) * Equiv A B) -> Path (f2 (f1 a)) a
uaretSig {A} p = sigmaPath (\i -> p.1) (uaret {A} {p.1} p.2)
contrEquivSingl = isContrRetract (f1 ua idToEquiv) (f2 ua idToEquiv) (uaretSig ua idToEquiv (uaret {A})) singContr where
f1 : (ua : {B : Type} -> Equiv A B -> Path A B)
(idToEquiv : {B : Type} -> Path A B -> Equiv A B)
(p : (B : Type) * Equiv A B)
-> (B : Type) * Path A B
f1 ua idtoequiv p = (p.1, ua p.2)
f2 : (ua : {B : Type} -> Equiv A B -> Path A B)
(idToEquiv : {B : Type} -> Path A B -> Equiv A B)
(p : (B : Type) * Path A B)
-> (B : Type) * Equiv A B
f2 ua idtoequiv p = (p.1, idToEquiv p.2)
uaretSig : (ua : {B : Type} -> Equiv A B -> Path A B)
(idtoequiv : {B : Type} -> Path A B -> Equiv A B)
(uaret : {B : Type} (e : Equiv A B) -> Path (idToEquiv (ua e)) e)
-> (a : (B : Type) * Equiv A B) -> Path (f2 ua idtoequiv (f1 ua idtoequiv a)) a
uaretSig ua idtoequiv ret p i = (p.1, ret {p.1} p.2 i)
curry : {A : Type} {B : A -> Type} {C : (x : A) -> B x -> Type}
-> Path ((x : A) (y : B x) -> C x y) ((p : (x : A) * B x) -> C p.1 p.2)
@ -1606,6 +1723,10 @@ EquivJ_domain P p E = subst {(X : Type) * Equiv X Y} (\x -> P x.1 x.2) q p where
q : Path {(X : Type) * Equiv X Y} (Y, idEquiv) (X, E)
q = isContr_isProp contrSinglEquiv (Y, idEquiv) (X, E)
EquivJ_fun : {A : Type} {B : Type} (P : (A : Type) -> (A -> B) -> Type)
-> P B id -> (e : Equiv A B) -> P A e.1
EquivJ_fun P r e = EquivJ_domain (\A e -> P A e.1) r e
EquivJ_range : {X : Type} (P : (Y : Type) -> Equiv X Y -> Type)
-> P X idEquiv
-> {Y : Type} (E : Equiv X Y)
@ -1633,6 +1754,21 @@ univalence = IsoToEquiv (pathToEquiv, ua, pathToEquiv_ua, ua_pathToEquiv) where
lemma : (A : Type) -> Path (pathToEquiv (ua idEquiv)) idEquiv
lemma A = transp (\i -> Path (pathToEquiv (uaIdEquiv {A} (inot i))) idEquiv) pathToEquiv_refl
IsoJ : {B : Type} -> (Q : {A : Type} -> (A -> B) -> (B -> A) -> Type)
-> Q id id
-> {A : Type} (f : A -> B) (g : B -> A)
-> Path (\x -> g (f x)) id -> Path (\x -> f (g x)) id
-> Q f g
IsoJ Q h f g sfg rfg = rem1 f g sfg rfg where
P : (A : Type) -> (A -> B) -> Type
P A f = (g : B -> A) -> Path (\x -> g (f x)) id -> Path (\x -> f (g x)) id -> Q f g
rem : P B id
rem g sfg rfg = subst (Q id) (\i b -> sfg (inot i) b) h
rem1 : {A : Type} (f : A -> B) -> P A f
rem1 f g sfg rfg = EquivJ_fun P rem (IsoToEquiv (f, g, \i x -> rfg x i, \i x -> sfg x i)) g sfg rfg
total : {A : Type} {P : A -> Type} {Q : A -> Type}
-> ((x : A) -> P x -> Q x)
-> ((x : A) * P x) -> ((x : A) * Q x)
@ -1703,16 +1839,65 @@ contrIsEquiv cA cB f y =
theorem722 : {A : Type} {R : A -> A -> Type}
-> ((x : A) (y : A) -> isProp (R x y))
-> ({x : A} -> R x x)
-> ((x : A) -> R x x)
-> (f : (x : A) (y : A) -> R x y -> Path x y)
-> {x : A} {y : A} -> isEquiv {R x y} {Path x y} (f x y)
theorem722 prop rho toId {x} {y} = fiberEquiv (toId x) (totalEquiv x) y where
rContr : (x : A) -> isContr ((y : A) * R x y)
rContr x = ((x, rho {x}), \y -> sigmaPath (toId _ _ y.2) (prop _ _ _ y.2))
rContr x = ((x, rho x), \y -> sigmaPath (toId _ _ y.2) (prop _ _ _ y.2))
totalEquiv : (x : A) -> isEquiv (total (toId x))
totalEquiv x = contrIsEquiv (rContr x) singContr (total (toId x))
isSet_Coproduct : {A : Type} {B : Type} -> isSet A -> isSet B -> isSet (Coproduct A B)
isSet_Coproduct setA setB = Req_isProp where
T = Coproduct A B
R : T -> T -> Type
R = \case
inl x -> \case
inl y -> Path x y
inr x -> Bottom
push c i -> absurd c
inr x -> \case
inl x -> Bottom
inr y -> Path x y
push c i -> absurd c c
R_prop : (x : T) (y : T) -> isProp (R x y)
R_prop = \case
inl x -> \case
inl y -> setA x y
inr y -> \p q -> absurd p
push c i -> absurd c
inr x -> \case
inl y -> \p q -> absurd p
inr y -> setB x y
push c i -> absurd c
R_refl : (x : T) -> R x x
R_refl = \case
inl x -> refl
inr x -> refl
push c i -> absurd c
R_impliesEq : (x : T) (y : T) -> R x y -> Path x y
R_impliesEq = \case
inl x -> \case
inl y -> \p -> ap inl p
inr y -> \p -> absurd p
push c i -> absurd c
inr x -> \case
inl y -> \p -> absurd p
inr y -> \p -> ap inr p
push c i -> absurd c
Req_isEquiv : {x : T} {y : T} -> Equiv (R x y) (Path x y)
Req_isEquiv = (R_impliesEq x y, theorem722 R_prop R_refl R_impliesEq)
Req_isProp : (x : T) (y : T) -> isProp (Path x y)
Req_isProp x y = isProp_equiv {R x y} {Path x y} (Req_isEquiv {x} {y}) (R_prop x y)
lemma492 : {A : Type} {B : Type} {X : Type}
-> (e : Equiv A B)
-> isEquiv {X -> A} {X -> B} (\f x -> e.1 (f x))
@ -1830,10 +2015,10 @@ data nTrunc (A : Type) (n : Nat) : Type where
hub : (f : Sphere (succ n) -> nTrunc A n) -> nTrunc A n
spoke i : (f : Sphere (succ n) -> nTrunc A n) (x : Sphere (succ n)) -> nTrunc A n [ (i = i0) -> hub f, (i = i1) -> f x ]
nTrunc_isOfHLevel : {A : Type} {n : Nat} -> isOfHLevel (nTrunc A n) n
nTrunc_isOfHLevel : {n : Nat} {A : Type} -> isOfHLevel (nTrunc A n) n
nTrunc_isOfHLevel = spheresFull_hLevel {nTrunc A n} n (\f -> (hub f, \x i -> spoke f x i))
nTrunc_rec : {A : Type} {n : Nat} {B : Type}
nTrunc_rec : {n : Nat} {A : Type} {B : Type}
-> isOfHLevel B n
-> (A -> B)
-> nTrunc A n -> B
@ -1847,4 +2032,296 @@ nTrunc_rec bofhl f = go (isOfHLevel_hasSpheres n bofhl) where
go p = \case
incn x -> f x
hub sph -> (p (\x -> work p (sph x))).1
spoke sph cell i -> (p (\x -> work p (sph x))).2 cell i
spoke sph cell i -> (p (\x -> work p (sph x))).2 cell i
nTrunc_lift : {A : Type} {B : Type} {n : Nat} -> (A -> B) -> nTrunc A n -> nTrunc B n
nTrunc_lift f = nTrunc_rec (nTrunc_isOfHLevel {n} {B}) (\x -> incn {B} {n} (f x))
-- data W (A : Type) (B : A -> Type) : Type where
-- sup : (a : A) -> (B a -> W A B) -> W A B
-- Welim : {A : Type} {B : A -> Type} (P : W A B -> Type)
-- -> (sup : (a : A) (f : B a -> W A B) (g : (x : B a) -> P (f x)) -> P (sup a f))
-- -> (c : W A B) -> P c
-- Welim P k = \case
-- sup a f -> k a f (\x -> Welim P k (f x))
-- wnat : Type
-- wnat = W Bool (if Unit Bottom)
-- wzero : wnat
-- wzero = sup false absurd
-- wsucc : wnat -> wnat
-- wsucc n = sup true (\x -> n)
-- wnat_elim : (P : wnat -> Type) (pz : P wzero) (ps : (c : wnat) -> P c -> P (wsucc c)) -> (x : wnat) -> P x
-- wnat_elim P pz ps x = Welim P (\a f g -> helper a f g) x where
-- A = Bool
-- B = if Unit Bottom
-- helper : (a : A) (f : B a -> W A B) (g : (x : B a) -> P (f x)) -> P (sup a f)
-- helper = \case
-- false -> \f g -> pz
-- true -> \f g ->
-- let
-- t : P (sup true (\x -> f tt))
-- t = ps (f tt) (g tt)
-- in transp (\i -> P (sup true (\x -> f (unitEta x (inot i))))) t
-- nat_is_wnat : Path Nat wnat
-- nat_is_wnat = IsoToId (to, from, toFrom, fromTo) where
-- to : Nat -> wnat
-- to = Nat_elim (\x -> wnat) wzero (\_ x -> wsucc x)
-- from : wnat -> Nat
-- from = wnat_elim (\x -> Nat) zero (\_ x -> succ x)
-- toFrom : (y : wnat) -> Path (to (from y)) y
-- toFrom = wnat_elim (\x -> Path (to (from x)) x) refl (\x y -> ap wsucc y)
-- fromTo : (x : Nat) -> Path (from (to x)) x
-- fromTo = Nat_elim (\x -> Path (from (to x)) x) refl (\x y -> ap succ y)
-- plusWnat : wnat -> wnat -> wnat
-- plusWnat = subst (\x -> x -> x -> x) nat_is_wnat plusNat
-- Pointed : Type
-- Pointed = (X : Type) * X * isSet X
-- Set : Type
-- Set = (X : Type) * isSet X
-- map : Set -> Set -> Type
-- map A B = A.1 -> B.1
-- pmap : Pointed -> Pointed -> Type
-- pmap A B = (f : A.1 -> B.1) * Path (f A.2.1) B.2.1
-- Zero : Pointed
-- Zero = (Unit, tt, isProp_isSet l) where
-- l : (a : Unit) (b : Unit) -> Path a b
-- l = \case
-- tt -> \case
-- tt -> refl
-- compose : {A : Pointed} {B : Pointed} {C : Pointed} -> pmap B C -> pmap A B -> pmap A C
-- compose g f = (\x -> g.1 (f.1 x), subst (\x -> Path (g.1 x) C.2.1) (sym f.2) g.2)
-- id : {A : Pointed} -> pmap A A
-- id = (\x -> x, refl)
-- initial : {A : Pointed} -> pmap Zero A
-- initial = (\_ -> A.2.1, refl)
-- terminal : {A : Pointed} -> pmap A Zero
-- terminal = (\_ -> tt, refl)
-- cast : {A : Pointed} {B : Pointed} -> pmap A B
-- cast = compose {A} {Zero} {B} (initial {B}) (terminal {A})
-- Product : Pointed -> Pointed -> Pointed
-- Product A B = (A.1 * B.1, (A.2.1, B.2.1), isSet_prod A.2.2 B.2.2)
-- proj1 : {A : Pointed} {B : Pointed} -> pmap (Product A B) A
-- proj1 = (\x -> x.1, refl)
-- proj2 : {A : Pointed} {B : Pointed} -> pmap (Product A B) B
-- proj2 = (\x -> x.2, refl)
-- cross : {G : Pointed} {A : Pointed} {B : Pointed} -> pmap G A -> pmap G B -> pmap G (Product A B)
-- cross f g = (\x -> (f.1 x, g.1 x), \i -> (f.2 i, g.2 i))
-- inj1 : {A : Pointed} {B : Pointed} -> pmap A (Product A B)
-- inj1 = cross {A} {A} {B} (id {A}) (cast {A} {B})
-- inj2 : {A : Pointed} {B : Pointed} -> pmap B (Product A B)
-- inj2 = cross {B} {A} {B} (cast {B} {A}) (id {B})
-- pmap_equal : {A : Pointed} {B : Pointed} (f : pmap A B) (g : pmap A B) -> Path f.1 g.1 -> Path f g
-- pmap_equal f g p = sigmaPath {A.1 -> B.1} {\f -> Path (f A.2.1) B.2.1} p (transp (\i -> PathP_is_Path (\i -> Path (p i A.2.1) B.2.1) f.2 g.2 (inot i)) (B.2.2 _ _ _ _))
-- zero_comp : {A : Pointed} {B : Pointed} {C : Pointed} (f : pmap B C)
-- -> Path (compose {A} {B} {C} f (cast {A} {B})) (cast {A} {C})
-- zero_comp f = pmap_equal {A} {C} _ _ (\i x -> f.2 i)
-- Forget : Pointed -> Set
-- Forget P = (P.1, P.2.2)
-- Free : Set -> Pointed
-- Free P = (Coproduct P.1 Unit, inr tt, Coproduct_isSet P.2 unitSet)
Precategory : Type
Precategory = (Ob : Type)
* (Hom : Ob -> Ob -> Type)
* (hset : (A : Ob) (B : Ob) -> isSet (Hom A B))
* (id : {A : Ob} -> Hom A A)
* (compose : {A : Ob} {B : Ob} {C : Ob} -> Hom B C -> Hom A B -> Hom A C)
* (idl : {A : Ob} {B : Ob} (f : Hom A B) -> Path (compose id f) f)
* (idr : {A : Ob} {B : Ob} (f : Hom A B) -> Path (compose f id) f)
* ({A : Ob} {B : Ob} {C : Ob} {D : Ob}
-> (f : Hom C D) (g : Hom B C) (h : Hom A B)
-> Path (compose f (compose g h)) (compose (compose f g) h))
Ob : (C : Precategory) -> Type
Ob C = C.1
Hom : (C : Precategory) -> Ob C -> Ob C -> Type
Hom C = C.2.1
homSet : {C : Precategory} (A : Ob C) (B : Ob C) -> isSet (Hom C A B)
homSet = C.2.2.1
Cid : (C : Precategory) {A : Ob C} -> Hom C A A
Cid C = C.2.2.2.1
compose : {Cat : Precategory} {A : Ob Cat} {B : Ob Cat} {C : Ob Cat}
-> Hom Cat B C -> Hom Cat A B -> Hom Cat A C
compose = Cat.2.2.2.2.1
leftId : {Cat : Precategory} {A : Ob Cat} {B : Ob Cat}
-> (f : Hom Cat A B) -> Path (compose {Cat} (Cid Cat) f) f
leftId = Cat.2.2.2.2.2.1
rightId : {Cat : Precategory} {A : Ob Cat} {B : Ob Cat}
-> (f : Hom Cat A B) -> Path (compose {Cat} f (Cid Cat)) f
rightId = Cat.2.2.2.2.2.2.1
assocCompose : {Cat : Precategory} {A : Ob Cat} {B : Ob Cat} {C : Ob Cat} {D : Ob Cat}
-> (f : Hom Cat C D) (g : Hom Cat B C) (h : Hom Cat A B)
-> Path (compose {Cat} f (compose {Cat} g h)) (compose {Cat} (compose {Cat} f g) h)
assocCompose = Cat.2.2.2.2.2.2.2
Opposite : Precategory -> Precategory
Opposite Cat =
( Cat.1
, \A B -> Cat.2.1 B A
, \A B -> Cat.2.2.1 B A
, Cat.2.2.2.1
, \f g -> compose {Cat} g f
, \f -> rightId {Cat} f
, \f -> leftId {Cat} f
, \f g h i -> assocCompose {Cat} h g f (inot i)
)
Coprod : {Cat : Precategory} -> Ob Cat -> Ob Cat -> Type
Coprod A B = (sum : Ob Cat)
* (inl : Hom Cat A sum)
* (inr : Hom Cat B sum)
* (elim : {S : Ob Cat} -> Hom Cat A S -> Hom Cat B S -> Hom Cat sum S)
* (eliml : {S : Ob Cat} (f : Hom Cat A S) (g : Hom Cat B S)
-> Path (compose {Cat} (elim f g) inl) f)
* ({S : Ob Cat} (f : Hom Cat A S) (g : Hom Cat B S)
-> Path (compose {Cat} (elim f g) inr) g)
Product : {Cat : Precategory} -> Ob Cat -> Ob Cat -> Type
Product = Coprod {Opposite Cat}
Set : Precategory
Set = (T, \A B -> A.1 -> B.1, homset, \x -> x, \g f x -> g (f x), \f -> refl, \f -> refl, \f g h -> refl) where
T = (X : Type) * isSet X
homset : (A : T) (B : T) -> isSet (A.1 -> B.1)
homset A B = isSet_pi (\_ -> B.2)
nat : Ob Set
nat = (Nat, Nat_isSet)
setCoprod : (A : Ob Set) (B : Ob Set) -> Coprod {Set} A B
setCoprod A B = (T, inl, inr, elim, \f g i x -> f x, \f g i x -> g x) where
T : Ob Set
T = (Coproduct A.1 B.1, isSet_Coproduct A.2 B.2)
elim : {S : Ob Set} -> Hom Set A S -> Hom Set B S -> Hom Set T S
elim f g = \case
inl x -> f x
inr x -> g x
push c i -> absurd c
setProd : (A : Ob Set) (B : Ob Set) -> Product {Set} A B
setProd A B = (T, \x -> x.1, \x -> x.2, \{S} -> cross {S}, \f g i -> f, \f g i -> g) where
T : Ob Set
T = (A.1 * B.1, isSet_prod A.2 B.2)
cross : {S : Ob Set} -> Hom Set S A -> Hom Set S B -> Hom Set S T
cross f g x = (f x, g x)
isIsoHom : {Cat : Precategory} {A : Ob Cat} {B : Ob Cat} -> Hom Cat A B -> Type
isIsoHom f = (inv : Hom Cat B A) * Path (compose {Cat} f inv) (Cid Cat) * Path (compose {Cat} inv f) (Cid Cat)
Isomorphism : {Cat : Precategory} -> Ob Cat -> Ob Cat -> Type
Isomorphism A B = (f : Hom Cat A B) * isIsoHom {Cat} {A} {B} f
isCategory : Precategory -> Type
isCategory Cat = (A : Ob Cat) (B : Ob Cat) -> Equiv (Path A B) (Isomorphism {Cat} A B)
-- setIsCategory : isCategory Set
-- setIsCategory A B = IsoToEquiv (pathTo, fromIso, pathTo_fromIso, _) where
-- pathTo : Path A B -> Isomorphism {Set} A B
-- pathTo = J {Ob Set} {A} (\B _ -> Isomorphism {Set} A B) (id, id, refl, refl)
--
-- augment : Path A.1 B.1 -> Path A B
--
-- fromIso : Isomorphism {Set} A B -> Path A B
-- fromIso iso = augment (IsoJ (\{A} f g -> Path A B.1) refl iso.1 iso.2.1 iso.2.2.2 iso.2.2.1)
--
-- augment p = sigmaPath {Type} {isSet} p (transp (\i -> PathP_is_Path (\j -> isSet (p j)) A.2 B.2 (inot i)) (isSet_isProp {B.1} (transp (\i -> isSet (p i)) A.2) B.2))
--
-- pathTo_fromIso : (i : Isomorphism {Set} A B) -> Path (pathTo (fromIso i)) i
-- pathTo_fromIso iso i = (iso.1, iso.2.1, iso.2.2.1, iso.2.2.2)
sym_subst : {A : Type} {x : A} {y : A} -> Path x y -> Path y x
sym_subst p = subst (\y -> Path y x) p refl
trans_subst : {A : Type} {x : A} {y : A} {z : A} -> Path x y -> Path y z -> Path x z
trans_subst p q = subst (\y -> Path y z -> Path x z) p id q
data Unlist (A : Type) : Type where
uncons : A -> Unlist A -> Unlist A
unelim : {A : Type}
(P : Unlist A -> Type)
-> ((x : A) (tail : Unlist A) -> P tail -> P (uncons x tail))
-> (x : Unlist A) -> P x
unelim P c = \case
uncons x xs -> c x xs (unelim P c xs)
contra : {A : Type} -> Unlist A -> Bottom
contra = unelim (\x -> Bottom) (\_ _ x -> x)
plusInt : Int -> Int -> Int
plusInt x y = winding (trans (goAround x) (goAround y))
add : Nat -> Nat -> Nat
add = Nat_elim (\ _ -> Nat -> Nat) (\ x -> x) (\n k x -> succ (k x))
addAssoc : (i : Nat) (j : Nat) (k : Nat) -> Path (add i (add j k)) (add (add i j) k)
addAssoc = Nat_elim (\ i -> (j : Nat) (k : Nat) -> Path (add i (add j k)) (add (add i j) k)) (\j k -> refl) (\n assoc j k -> ap succ (assoc j k))
Jsym : {A : Type} {x : A} {y : A} -> Path x y -> Path y x
Jsym = J (\y _ -> Path y x) refl
Vect : Type -> Nat -> Type
Vect A = \case
zero -> Unit
succ n -> A * Vect A n
Vect_elim : {A : Type} (P : {n : Nat} -> Vect A n -> Type)
-> P {zero} tt
-> ({n : Nat} (x : A) (xs : Vect A n) -> P {n} xs -> P {succ n} (x, xs))
-> {n : Nat} (x : Vect A n) -> P {n} x
Vect_elim P nil cons {n} x = go n x where
go : (n : Nat) (x : Vect A n) -> P x
go = \case
zero -> \case
tt -> nil
succ n -> \xs -> cons {n} xs.1 xs.2 (go n xs.2)
head : {A : Type} {n : Nat} -> Vect A (succ n) -> A
head xs = xs.1
tail : {A : Type} {n : Nat} -> Vect A (succ n) -> Vect A n
tail xs = xs.2
equivToIso : {A : Type} {B : Type} (f : A -> B) -> isEquiv f -> isIso f
equivToIso f e = EquivJ (\X Y f -> isIso f.1) (\x -> (id, \x -> refl, \x -> refl)) (f, e)

+ 8
- 8
src/Elab/Eval.hs View File

@ -208,11 +208,11 @@ evalCase env rng (VHComp a φ u u0) cases =
evalCase env _ sc ((Ref _, _, k):_) = eval' env k @@ sc
evalCase env rng (val@(VNe (HCon _ x) sp)) ((Con x', _, k):xs)
evalCase env rng (force -> val@(VNe (HCon _ x) sp)) ((Con x', _, k):xs)
| x == x' = foldl applProj (eval' env k) sp
| otherwise = evalCase env rng val xs
evalCase env rng (val@(VNe (HPCon _ _ x) sp)) ((Con x', _, k):xs)
evalCase env rng (force -> val@(VNe (HPCon _ _ x) sp)) ((Con x', _, k):xs)
| x == x' = foldl applProj (eval' env k) sp
| otherwise = evalCase env rng val xs
@ -490,6 +490,10 @@ _nameCounter = unsafePerformIO $ newIORef 0
solveMeta :: MV -> Seq Projection -> Value -> ElabM ()
solveMeta m Seq.Empty (VNe (HMeta m') Seq.Empty) | m == m' = pure ()
solveMeta m@(mvCell -> cell) sp rhs = do
when (mvName m == T.pack "2801") do
traceM (VNe (HMeta m) sp)
traceM rhs
env <- ask
names <- tryElab $ checkSpine Set.empty sp
case names of
@ -600,11 +604,6 @@ substituteIO sub = substituteIO . force where
substituteIO (VNe hd sp) = do
sp' <- traverse (substituteSp sub) sp
case hd of
HMeta (mvCell -> cell) -> do
solved <- liftIO $ readIORef cell
case solved of
Just vl -> substituteIO $ foldl applProj vl sp'
Nothing -> pure $ VNe hd sp'
HVar v ->
case Map.lookup v sub of
Just vl -> substituteIO $ foldl applProj vl sp'
@ -706,6 +705,7 @@ applProj fun PProj2 = vProj2 fun
vApp :: HasCallStack => Plicity -> Value -> Value -> Value
vApp _ (VLam _ k) arg = clCont k arg
vApp p (VNe (HData True n) _) _ | T.unpack (getNameText n) == "S1" = undefined
vApp p (VNe h sp) arg = VNe h (sp Seq.:|> PApp p arg)
vApp p (GluedVl h sp vl) arg = GluedVl h (sp Seq.:|> PApp p arg) (vApp p vl arg)
vApp p (VSystem fs) arg = mkVSystem (fmap (flip (vApp p) arg) fs)
@ -727,7 +727,7 @@ vProj1 (VSystem fs) = VSystem (fmap vProj1 fs)
vProj1 (VInc (VSigma a _) b c) = incS a b (vProj1 c)
vProj1 (VCase env rng sc branches) =
VCase env rng sc (map (projIntoCase Proj1) branches)
vProj1 x = error $ "can't proj1 " ++ show (prettyTm (quote x))
vProj1 x = error $ "can't proj1 " ++ show x
vProj2 :: HasCallStack => Value -> Value
vProj2 (VPair _ b) = b


+ 6
- 9
src/Elab/WiredIn.hs View File

@ -7,6 +7,7 @@
{-# LANGUAGE CPP #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# OPTIONS_GHC -fno-full-laziness #-}
module Elab.WiredIn
( wiType
, wiValue
@ -54,7 +55,7 @@ import qualified Presyntax.Presyntax as P
import Syntax.Pretty (prettyTm, prettyVl)
import Syntax
import System.IO.Unsafe
import System.IO.Unsafe ( unsafePerformIO )
wiType :: WiredIn -> NFType
wiType WiType = VType
@ -342,11 +343,11 @@ comp a psi@phi u incA0@(outS (a @@ VI0) phi (u @@ VI0) -> a0) =
ts isone = mkVSystem . Map.fromList $ [(del, t1'), (psi, (b @@ VI1 @@ isone))]
ps _isone = mkVSystem . Map.fromList $ [(del, omega), (psi, VLine (line (const (base VI1))) a1' a1' (fun (const a1')))]
a1 = gcomp
a1 = comp
(fun (const (base VI1)))
(del `ior` psi)
(system \j _u -> mkVSystem (Map.fromList [ (del, ielim (base VI1) a1' (vProj1 (equivs VI1 @@ VReflStrict VI VI1)) alpha j)
, (psi, a VI1 (VReflStrict VI VI1))
, (psi, a psi _u)
]))
(incS (base VI1) (phi VI1 `ior` psi) a1')
b1 = glueElem (base VI1) (phi VI1) (types VI1) (equivs VI1) (fun (const t1)) (incS (base VI1) (ior (del `ior` psi) (inot del `iand` inot psi)) a1)
@ -367,17 +368,13 @@ comp a psi@phi u incA0@(outS (a @@ VI0) phi (u @@ VI0) -> a0) =
_ -> VComp a phi u (incS (a @@ VI0) phi a0)
where
{-# NOINLINE name #-}
name :: Name
name = unsafePerformIO newName
{-# NOINLINE equivVar #-}
equivVar :: Name
equivVar = unsafePerformIO newName
gcomp :: DebugCallStack => NFLine -> NFEndp -> Value -> Value -> Value
gcomp a phi u a0 =
comp a (ior phi (inot phi))
(system \i is1 -> mkVSystem $ Map.fromList [ (phi, u @@ i @@ is1)
, (inot phi, outS (a @@ VI0) phi (u @@ VI0) a0) ])
a0
mapVSystem :: (Value -> Value) -> Value -> Value
mapVSystem f (VSystem fs) = VSystem (fmap f fs)


+ 3
- 3
src/Main.hs View File

@ -215,9 +215,9 @@ displayExceptions lines =
endp = case ep of
VI0 -> Lt.pack "left"
VI1 -> Lt.pack "right"
_ -> render . prettyTm $ quote ep
left = render (prettyTm (quote le))
right = render (prettyTm (quote ri))
_ -> render . prettyTm $ quoteWith False mempty ep
left = render (prettyTm (quoteWith False mempty le))
right = render (prettyTm (quoteWith False mempty ri))
Lt.putStrLn . Lt.unlines $
[ "\n\x1b[1;32mnote\x1b[0m: This path was expected to fill the diagram <<"
, "\t " <> redact left <> " " <> Lt.replicate 7 (Lt.singleton '\x2500') <> " " <> redact right


+ 1
- 1
src/Presyntax/Lexer.x View File

@ -183,4 +183,4 @@ laidOut x l c = do
mapUserState $ \s -> s { leastColumn = c }
pure (Token x l c)
}
}

+ 47
- 47
src/Syntax.hs View File

@ -193,8 +193,8 @@ data Value
pattern VVar :: Name -> Value
pattern VVar x = VNe (HVar x) Seq.Empty
quoteWith :: Set Name -> Value -> Term
quoteWith names (VNe h sp) = foldl goSpine (goHead h) sp where
quoteWith :: Bool -> Set Name -> Value -> Term
quoteWith short names (VNe h sp) = foldl goSpine (goHead h) sp where
goHead (HVar v) = Ref v
goHead (HMeta m) = Meta m
goHead (HCon _ v) = Con v
@ -208,7 +208,7 @@ quoteWith names (VNe h sp) = foldl goSpine (goHead h) sp where
s -> constantly (length sp) s
goHead (HData x v) = Data x v
goSpine t (PApp p v) = App p t (quoteWith names v)
goSpine t (PApp p v) = App p t (quoteWith short names v)
goSpine t (PIElim l x y i) = IElim (quote l) (quote x) (quote y) t (quote i)
goSpine t (PK l x y i) = AxK (quote l) (quote x) (quote y) (quote i) t
goSpine t (PJ l x y i f) = AxJ (quote l) (quote x) (quote y) (quote i) (quote f) t
@ -216,69 +216,69 @@ quoteWith names (VNe h sp) = foldl goSpine (goHead h) sp where
goSpine t PProj2 = Proj2 t
goSpine t (POuc a phi u) = Ouc (quote a) (quote phi) (quote u) t
constantly 0 n = quoteWith names n
constantly 0 n = quoteWith short names n
constantly k x = Lam Ex (Bound (T.pack "x") (negate 1)) $ constantly (k - 1) x
quoteWith names (GluedVl _ Seq.Empty x) = quoteWith names x
quoteWith short names (GluedVl _ Seq.Empty x) = quoteWith short names x
quoteWith names (GluedVl h sp (VLam p (Closure n k))) =
quoteWith names (VLam p (Closure n (\a -> GluedVl h (sp Seq.:|> PApp p a) (k a))))
quoteWith short names (GluedVl h sp (VLam p (Closure n k))) =
quoteWith short names (VLam p (Closure n (\a -> GluedVl h (sp Seq.:|> PApp p a) (k a))))
quoteWith names (GluedVl h sp (VLine ty x y (VLam p (Closure n k)))) =
quoteWith names (VLine ty x y (VLam p (Closure n (\a -> GluedVl h (sp Seq.:|> PIElim ty x y a) (k a)))))
quoteWith short names (GluedVl h sp (VLine ty x y (VLam p (Closure n k)))) =
quoteWith short names (VLine ty x y (VLam p (Closure n (\a -> GluedVl h (sp Seq.:|> PIElim ty x y a) (k a)))))
quoteWith names (GluedVl h sp vl)
| GluedVl _ _ inner <- vl = quoteWith names (GluedVl h sp inner)
| True || alwaysShort vl = quoteWith names vl
quoteWith short names (GluedVl h sp vl)
| GluedVl _ _ inner <- vl = quoteWith short names (GluedVl h sp inner)
| short || alwaysShort vl = quoteWith short names vl
| _ Seq.:|> PIElim _ x y i <- sp =
case i of
VI0 -> quoteWith names x
VI1 -> quoteWith names y
_ -> quoteWith names (VNe h sp)
| otherwise = quoteWith names (VNe h sp)
VI0 -> quoteWith short names x
VI1 -> quoteWith short names y
_ -> quoteWith short names (VNe h sp)
| otherwise = quoteWith short names (VNe h sp)
quoteWith names (VLam p (Closure n k)) =
quoteWith short names (VLam p (Closure n k)) =
let n' = refresh Nothing names n
in Lam p n' (quoteWith (Set.insert n' names) (k (VVar n')))
in Lam p n' (quoteWith short (Set.insert n' names) (k (VVar n')))
quoteWith names (VPi p d (Closure n k)) =
quoteWith short names (VPi p d (Closure n k)) =
let n' = refresh (Just d) names n
in Pi p n' (quoteWith names d) (quoteWith (Set.insert n' names) (k (VVar n')))
in Pi p n' (quoteWith short names d) (quoteWith short (Set.insert n' names) (k (VVar n')))
quoteWith names (VSigma d (Closure n k)) =
quoteWith short names (VSigma d (Closure n k)) =
let n' = refresh (Just d) names n
in Sigma n' (quoteWith names d) (quoteWith (Set.insert n' names) (k (VVar n')))
in Sigma n' (quoteWith short names d) (quoteWith short (Set.insert n' names) (k (VVar n')))
quoteWith names (VPair a b) = Pair (quoteWith names a) (quoteWith names b)
quoteWith _ VType = Type
quoteWith _ VTypeω = Typeω
quoteWith short names (VPair a b) = Pair (quoteWith short names a) (quoteWith short names b)
quoteWith _ _ VType = Type
quoteWith _ _ VTypeω = Typeω
quoteWith _ VI = I
quoteWith _ VI0 = I0
quoteWith _ VI1 = I1
quoteWith names (VIAnd x y) = IAnd (quoteWith names x) (quoteWith names y)
quoteWith names (VIOr x y) = IOr (quoteWith names x) (quoteWith names y)
quoteWith names (VINot x) = INot (quoteWith names x)
quoteWith _ _ VI = I
quoteWith _ _ VI0 = I0
quoteWith _ _ VI1 = I1
quoteWith short names (VIAnd x y) = IAnd (quoteWith short names x) (quoteWith short names y)
quoteWith short names (VIOr x y) = IOr (quoteWith short names x) (quoteWith short names y)
quoteWith short names (VINot x) = INot (quoteWith short names x)
quoteWith names (VPath line x y) = PathP (quoteWith names line) (quoteWith names x) (quoteWith names y)
quoteWith names (VLine p x y f) = PathIntro (quoteWith names p) (quoteWith names x) (quoteWith names y) (quoteWith names f)
quoteWith short names (VPath line x y) = PathP (quoteWith short names line) (quoteWith short names x) (quoteWith short names y)
quoteWith short names (VLine p x y f) = PathIntro (quoteWith short names p) (quoteWith short names x) (quoteWith short names y) (quoteWith short names f)
quoteWith names (VPartial x y) = Partial (quoteWith names x) (quoteWith names y)
quoteWith names (VPartialP x y) = PartialP (quoteWith names x) (quoteWith names y)
quoteWith names (VSystem fs) = System (Map.fromList (map (\(x, y) -> (quoteWith names x, quoteWith names y)) (Map.toList fs)))
quoteWith names (VSub a b c) = Sub (quoteWith names a) (quoteWith names b) (quoteWith names c)
quoteWith names (VInc a b c) = Inc (quoteWith names a) (quoteWith names b) (quoteWith names c)
quoteWith names (VComp a phi u a0) = Comp (quoteWith names a) (quoteWith names phi) (quoteWith names u) (quoteWith names a0)
quoteWith names (VHComp a phi u a0) = HComp (quoteWith names a) (quoteWith names phi) (quoteWith names u) (quoteWith names a0)
quoteWith short names (VPartial x y) = Partial (quoteWith short names x) (quoteWith short names y)
quoteWith short names (VPartialP x y) = PartialP (quoteWith short names x) (quoteWith short names y)
quoteWith short names (VSystem fs) = System (Map.fromList (map (\(x, y) -> (quoteWith short names x, quoteWith short names y)) (Map.toList fs)))
quoteWith short names (VSub a b c) = Sub (quoteWith short names a) (quoteWith short names b) (quoteWith short names c)
quoteWith short names (VInc a b c) = Inc (quoteWith short names a) (quoteWith short names b) (quoteWith short names c)
quoteWith short names (VComp a phi u a0) = Comp (quoteWith short names a) (quoteWith short names phi) (quoteWith short names u) (quoteWith short names a0)
quoteWith short names (VHComp a phi u a0) = HComp (quoteWith short names a) (quoteWith short names phi) (quoteWith short names u) (quoteWith short names a0)
quoteWith names (VGlueTy a phi t e) = GlueTy (quoteWith names a) (quoteWith names phi) (quoteWith names t) (quoteWith names e)
quoteWith names (VGlue a phi ty e t x) = Glue (quoteWith names a) (quoteWith names phi) (quoteWith names ty) (quoteWith names e) (quoteWith names t) (quoteWith names x)
quoteWith names (VUnglue a phi ty e x) = Unglue (quoteWith names a) (quoteWith names phi) (quoteWith names ty) (quoteWith names e) (quoteWith names x)
quoteWith short names (VGlueTy a phi t e) = GlueTy (quoteWith short names a) (quoteWith short names phi) (quoteWith short names t) (quoteWith short names e)
quoteWith short names (VGlue a phi ty e t x) = Glue (quoteWith short names a) (quoteWith short names phi) (quoteWith short names ty) (quoteWith short names e) (quoteWith short names t) (quoteWith short names x)
quoteWith short names (VUnglue a phi ty e x) = Unglue (quoteWith short names a) (quoteWith short names phi) (quoteWith short names ty) (quoteWith short names e) (quoteWith short names x)
quoteWith names (VCase _ rng v xs) = Case (quoteWith names rng) (quoteWith names v) xs
quoteWith short names (VCase _ rng v xs) = Case (quoteWith short names rng) (quoteWith short names v) xs
quoteWith names (VEqStrict a x y) = EqS (quoteWith names a) (quoteWith names x) (quoteWith names y)
quoteWith names (VReflStrict a x) = Syntax.Refl (quoteWith names a) (quoteWith names x)
quoteWith short names (VEqStrict a x y) = EqS (quoteWith short names a) (quoteWith short names x) (quoteWith short names y)
quoteWith short names (VReflStrict a x) = Syntax.Refl (quoteWith short names a) (quoteWith short names x)
alwaysShort :: Value -> Bool
alwaysShort (VNe HCon{} _) = True
@ -297,7 +297,7 @@ refresh x s n
| otherwise = refresh x s (Bound (getNameText n <> T.singleton '\'') 0)
quote :: Value -> Term
quote = quoteWith mempty
quote = quoteWith True mempty
data Closure
= Closure


+ 3
- 3
src/Syntax/Pretty.hs View File

@ -132,7 +132,7 @@ prettyTm' implicits = go True 0 where
GlueTy a phi t e -> apps (con "primGlue") [(Ex, a), (Ex, phi), (Ex, t), (Ex, e)]
Glue _a _phi _ty _e t im -> apps (con "glue") [(Ex, t), (Ex, im)]
Unglue _a _phi _ty _e t -> apps (con "unglue") [(Ex, t)]
Unglue _a _phi _ty _e t -> apps (con "unglue") [(Im, _a), (Im, _phi), (Im, _ty), (Im, _e), (Ex, t)]
Comp a phi u a0 -> apps (con "comp") [(Ex, a), (Im, phi), (Ex, u), (Ex, a0)]
HComp a phi u a0 -> apps (con "hcomp") [(Im, a), (Im, phi), (Ex, u), (Ex, a0)]
@ -192,10 +192,10 @@ prettyBinds imp ((x, ty, tm):bs) =
showFace :: Bool -> Map Head Bool -> Doc AnsiStyle
showFace imp = hsep . map go . Map.toList where
go (h, b) = parens $ prettyTm' imp (quote (VNe h mempty)) <+> operator (pretty "=") <+> pretty (if b then "i1" else "i0")
go (h, b) = parens $ prettyTm' imp (quoteWith False mempty (VNe h mempty)) <+> operator (pretty "=") <+> pretty (if b then "i1" else "i0")
prettyVl' :: Bool -> Value -> Doc AnsiStyle
prettyVl' b = prettyTm' b . quote
prettyVl' b = prettyTm' b . quoteWith True mempty
instance Pretty Term where
pretty = unAnnotate . prettyTm


Loading…
Cancel
Save