|  |  | @ -1631,11 +1631,11 @@ EquivJ {X} P d {Y} e = subst {(Y : Type) * Equiv Y X} (\x -> P x.1 x.2) path d w | 
			
		
	
		
			
				
					|  |  |  | path : Path {(Y : Type) * Equiv Y X} (X, the X, idEquiv {X}) (Y, e) | 
			
		
	
		
			
				
					|  |  |  | path = isContr_isProp {(Y : Type) * Equiv Y X} contrSinglEquiv (X, the X, idEquiv {X}) (Y, e) | 
			
		
	
		
			
				
					|  |  |  |  | 
			
		
	
		
			
				
					|  |  |  | pathToEquiv : {A : Type} {B : Type} -> Path A B -> Equiv A B | 
			
		
	
		
			
				
					|  |  |  | pathToEquiv {A} {B} = J {Type} {A} (\B p -> Equiv A B) (the A, idEquiv {A}) | 
			
		
	
		
			
				
					|  |  |  |  | 
			
		
	
		
			
				
					|  |  |  | uaIso : {A : Type} {B : Type} -> Iso (Path A B) (Equiv A B) | 
			
		
	
		
			
				
					|  |  |  | uaIso = (pathToEquiv, univalence, pathToEquiv_univalence, univalence_pathToEquiv) where | 
			
		
	
		
			
				
					|  |  |  | pathToEquiv : {A : Type} {B : Type} -> Path A B -> Equiv A B | 
			
		
	
		
			
				
					|  |  |  | pathToEquiv {A} {B} = J {Type} {A} (\B p -> Equiv A B) (the A, idEquiv {A}) | 
			
		
	
		
			
				
					|  |  |  |  | 
			
		
	
		
			
				
					|  |  |  | pathToEquiv_refl : {A : Type} -> Path (pathToEquiv (refl {Type} {A})) (the A, idEquiv {A}) | 
			
		
	
		
			
				
					|  |  |  | pathToEquiv_refl {A} = JRefl (\B p -> Equiv A B) (the A, idEquiv {A}) | 
			
		
	
		
			
				
					|  |  |  |  | 
			
		
	
	
		
			
				
					|  |  | 
 |