less prototype, less bad code implementation of CCHM type theory
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

886 lines
30 KiB

  1. -- We begin by adding some primitive bindings using the PRIMITIVE pragma.
  2. --
  3. -- It goes like this: PRIMITIVE primName varName.
  4. --
  5. -- If the varName is dropped, then it's taken to be the same as primName.
  6. --
  7. -- If there is a previous declaration for the varName, then the type
  8. -- is checked against the internally-known "proper" type for the primitive.
  9. -- Universe of fibrant types
  10. {-# PRIMITIVE Type #-}
  11. -- Universe of non-fibrant types
  12. {-# PRIMITIVE Pretype #-}
  13. -- Fibrant is a fancy word for "has a composition structure". Most types
  14. -- we inherit from MLTT are fibrant:
  15. --
  16. -- Stuff like products Π, sums Σ, naturals, booleans, lists, etc., all
  17. -- have composition structures.
  18. --
  19. -- The non-fibrant types are part of the structure of cubical
  20. -- categories: The interval, partial elements, cubical subtypes, ...
  21. -- The interval
  22. ---------------
  23. -- The interval has two endpoints i0 and i1.
  24. -- These form a de Morgan algebra.
  25. I : Pretype
  26. {-# PRIMITIVE Interval I #-}
  27. i0, i1 : I
  28. {-# PRIMITIVE i0 #-}
  29. {-# PRIMITIVE i1 #-}
  30. -- "minimum" on the interval
  31. iand : I -> I -> I
  32. {-# PRIMITIVE iand #-}
  33. -- "maximum" on the interval.
  34. ior : I -> I -> I
  35. {-# PRIMITIVE ior #-}
  36. -- The interpretation of iand as min and ior as max justifies the fact that
  37. -- ior i (inot i) != i1, since that equality only holds for the endpoints.
  38. -- inot i = 1 - i is a de Morgan involution.
  39. inot : I -> I
  40. {-# PRIMITIVE inot #-}
  41. -- Paths
  42. --------
  43. -- Since every function in type theory is internally continuous,
  44. -- and the two endpoints i0 and i1 are equal, we can take the type of
  45. -- equalities to be continuous functions out of the interval.
  46. -- That is, x ≡ y iff. ∃ f : I -> A, f i0 = x, f i1 = y.
  47. -- The type PathP generalises this to dependent products (i : I) -> A i.
  48. PathP : (A : I -> Type) -> A i0 -> A i1 -> Type
  49. {-# PRIMITIVE PathP #-}
  50. -- By taking the first argument to be constant we get the equality type
  51. -- Path.
  52. Path : {A : Type} -> A -> A -> Type
  53. Path {A} = PathP (\i -> A)
  54. -- reflexivity is given by constant paths
  55. refl : {A : Type} {x : A} -> Path x x
  56. refl {A} {x} i = x
  57. -- Symmetry (for dpeendent paths) is given by inverting the argument to the path, such that
  58. -- sym p i0 = p (inot i0) = p i1
  59. -- sym p i1 = p (inot i1) = p i0
  60. -- This has the correct endpoints.
  61. sym : {A : I -> Type} {x : A i0} {y : A i1} -> PathP A x y -> PathP (\i -> A (inot i)) y x
  62. sym p i = p (inot i)
  63. id : {A : Type} -> A -> A
  64. id x = x
  65. the : (A : Type) -> A -> A
  66. the A x = x
  67. -- The eliminator for the interval says that if you have x : A i0 and y : A i1,
  68. -- and x ≡ y, then you can get a proof A i for every element of the interval.
  69. iElim : {A : I -> Type} {x : A i0} {y : A i1} -> PathP A x y -> (i : I) -> A i
  70. iElim p i = p i
  71. -- This corresponds to the elimination principle for the HIT
  72. -- data I : Pretype where
  73. -- i0 i1 : I
  74. -- seg : i0 ≡ i1
  75. -- The singleton subtype of A at x is the type of elements of y which
  76. -- are equal to x.
  77. Singl : (A : Type) -> A -> Type
  78. Singl A x = (y : A) * Path x y
  79. -- Contractible types are those for which there exists an element to which
  80. -- all others are equal.
  81. isContr : Type -> Type
  82. isContr A = (x : A) * ((y : A) -> Path x y)
  83. -- Using the connection \i j -> y.2 (iand i j), we can prove that
  84. -- singletons are contracible. Together with transport later on,
  85. -- we get the J elimination principle of paths.
  86. singContr : {A : Type} {a : A} -> isContr (Singl A a)
  87. singContr {A} {a} = ((a, \i -> a), \y i -> (y.2 i, \j -> y.2 (iand i j)))
  88. -- Some more operations on paths. By rearranging parentheses we get a
  89. -- proof that the images of equal elements are themselves equal.
  90. cong : {A : Type} {B : A -> Type} (f : (x : A) -> B x) {x : A} {y : A} (p : Path x y) -> PathP (\i -> B (p i)) (f x) (f y)
  91. cong f p i = f (p i)
  92. -- These satisfy definitional equalities, like congComp and congId, which are
  93. -- propositional in vanilla MLTT.
  94. congComp : {A : Type} {B : Type} {C : Type}
  95. {f : A -> B} {g : B -> C} {x : A} {y : A}
  96. (p : Path x y)
  97. -> Path (cong g (cong f p)) (cong (\x -> g (f x)) p)
  98. congComp p = refl
  99. congId : {A : Type} {x : A} {y : A}
  100. (p : Path x y)
  101. -> Path (cong (id {A}) p) p
  102. congId p = refl
  103. -- Just like rearranging parentheses gives us cong, swapping the value
  104. -- and interval binders gives us function extensionality.
  105. funext : {A : Type} {B : A -> Type} {f : (x : A) -> B x} {g : (x : A) -> B x}
  106. (h : (x : A) -> Path (f x) (g x))
  107. -> Path f g
  108. funext h i x = h x i
  109. -- The proposition associated with an element of the interval
  110. -------------------------------------------------------------
  111. -- Associated with every element i : I of the interval, we have the type
  112. -- IsOne i which is inhabited only when i = i1. In the model, this
  113. -- corresponds to the map [φ] from the interval cubical set to the
  114. -- subobject classifier.
  115. IsOne : I -> Pretype
  116. {-# PRIMITIVE IsOne #-}
  117. -- The value itIs1 witnesses the fact that i1 = i1.
  118. itIs1 : IsOne i1
  119. {-# PRIMITIVE itIs1 #-}
  120. -- Partial elements
  121. -------------------
  122. --
  123. -- Since a function I -> A has two endpoints, and a function I -> I -> A
  124. -- has four endpoints + four functions I -> A as "sides" (obtained by
  125. -- varying argument while holding the other as a bound variable), we
  126. -- refer to elements of I^n -> A as "cubes".
  127. -- This justifies the existence of partial elements, which are, as the
  128. -- name implies, partial cubes. Namely, a Partial φ A is an element of A
  129. -- which depends on a proof that IsOne φ.
  130. Partial : I -> Type -> Pretype
  131. {-# PRIMITIVE Partial #-}
  132. -- There is also a dependent version where the type A is itself a
  133. -- partial element.
  134. PartialP : (phi : I) -> Partial phi Type -> Pretype
  135. {-# PRIMITIVE PartialP #-}
  136. -- Why is Partial φ A not just defined as φ -> A? The difference is that
  137. -- Partial φ A has an internal representation which definitionally relates
  138. -- any two partial elements which "agree everywhere", that is, have
  139. -- equivalent values for every possible assignment of variables which
  140. -- makes IsOne φ hold.
  141. -- Cubical Subtypes
  142. --------------------
  143. -- Given A : Type, phi : I, and a partial element u : A defined on φ,
  144. -- we have the type Sub A phi u, notated A[phi -> u] in the output of
  145. -- the type checker, whose elements are "extensions" of u.
  146. -- That is, element of A[phi -> u] is an element of A defined everywhere
  147. -- (a total element), which, when IsOne φ, agrees with u.
  148. Sub : (A : Type) (phi : I) -> Partial phi A -> Pretype
  149. {-# PRIMITIVE Sub #-}
  150. -- Every total element u : A can be made partial on φ by ignoring the
  151. -- constraint. Furthermore, this "totally partial" element agrees with
  152. -- the original total element on φ.
  153. inS : {A : Type} {phi : I} (u : A) -> Sub A phi (\x -> u)
  154. {-# PRIMITIVE inS #-}
  155. -- When IsOne φ, outS {A} {φ} {u} x reduces to u itIs1.
  156. -- This implements the fact that x agrees with u on φ.
  157. outS : {A : Type} {phi : I} {u : Partial phi A} -> Sub A phi u -> A
  158. {-# PRIMITIVE outS #-}
  159. -- The composition operation
  160. ----------------------------
  161. -- Now that we have syntax for specifying partial cubes,
  162. -- and specifying that an element agrees with a partial cube,
  163. -- we can describe the composition operation.
  164. comp : (A : I -> Type) {phi : I} (u : (i : I) -> Partial phi (A i)) -> Sub (A i0) phi (u i0) -> A i1
  165. {-# PRIMITIVE comp #-}
  166. -- In particular, when φ is a disjunction of the form
  167. -- (j = 0) || (j = 1), we can draw u as being a pair of lines forming a
  168. -- "tube", an open square with no floor or roof:
  169. --
  170. -- Given u = \j [ (i = i0) -> x, (i = i1) -> q j] on the extent i || ~i,
  171. -- we draw:
  172. --
  173. -- x q i1
  174. -- | |
  175. -- \j -> x | | \j -> q j
  176. -- | |
  177. -- x q i0
  178. --
  179. -- The composition operation says that, as long as we can provide a
  180. -- "floor" connecting x -- q i0, as a total element of A which, on
  181. -- phi, extends u i0, then we get the "roof" connecting x and q i1
  182. -- for free.
  183. --
  184. -- If we have a path p : x ≡ y, and q : y ≡ z, then we do get the
  185. -- "floor", and composition gets us the dotted line:
  186. --
  187. -- x..........z
  188. -- | |
  189. -- x | | q j
  190. -- | |
  191. -- x----------y
  192. -- p i
  193. trans : {A : Type} {x : A} {y : A} {z : A} -> PathP (\i -> A) x y -> PathP (\i -> A) y z -> PathP (\i -> A) x z
  194. trans {A} {x} p q i =
  195. comp (\i -> A)
  196. {ior i (inot i)}
  197. (\j [ (i = i0) -> x, (i = i1) -> q j ])
  198. (inS (p i))
  199. -- In particular when the formula φ = i0 we get the "opposite face" to a
  200. -- single point, which corresponds to transport.
  201. transp : (A : I -> Type) (x : A i0) -> A i1
  202. transp A x = comp A {i0} (\i [ ]) (inS x)
  203. -- Since we have the iand operator, we can also derive the *filler* of a cube,
  204. -- which connects the given face and the output of composition.
  205. fill : (A : I -> Type) {phi : I} (u : (i : I) -> Partial phi (A i)) -> Sub (A i0) phi (u i0) -> (i : I) -> A i
  206. fill A {phi} u a0 i =
  207. comp (\j -> A (iand i j))
  208. {ior phi (inot i)}
  209. (\j [ (phi = i1) as p -> u (iand i j) p, (i = i0) -> outS a0 ])
  210. (inS (outS a0))
  211. hfill : {A : Type} {phi : I} (u : (i : I) -> Partial phi A) -> Sub A phi (u i0) -> I -> A
  212. hfill {A} {phi} u a0 i = fill (\i -> A) {phi} u a0 i
  213. hcomp : {A : Type} {phi : I} (u : (i : I) -> Partial phi A) -> Sub A phi (u i0) -> A
  214. hcomp {A} {phi} u a0 = comp (\i -> A) {phi} u a0
  215. -- For instance, the filler of the previous composition square
  216. -- tells us that trans p refl = p:
  217. transRefl : {A : Type} {x : A} {y : A} (p : Path x y) -> Path (trans p refl) p
  218. transRefl p j i = fill (\i -> A) {ior i (inot i)} (\k [ (i = i0) -> x, (i = i1) -> y ]) (inS (p i)) (inot j)
  219. -- Reduction of composition
  220. ---------------------------
  221. --
  222. -- Composition reduces on the structure of the family A : I -> Type to create
  223. -- the element a1 : (A i1)[phi -> u i1].
  224. --
  225. -- For instance, when filling a cube of functions, the behaviour is to
  226. -- first transport backwards along the domain, apply the function, then
  227. -- forwards along the codomain.
  228. transpFun : {A : Type} {B : Type} {C : Type} {D : Type} (p : Path A B) (q : Path C D)
  229. -> (f : A -> C) -> Path (transp (\i -> p i -> q i) f)
  230. (\x -> transp (\i -> q i) (f (transp (\i -> p (inot i)) x)))
  231. transpFun p q f = refl
  232. -- When considering the more general case of a composition respecing sides,
  233. -- the outer transport becomes a composition.
  234. -- Glueing and Univalence
  235. -------------------------
  236. -- First, let's get some definitions out of the way.
  237. --
  238. -- The *fiber* of a function f : A -> B at a point y : B is the type of
  239. -- inputs x : A which f takes to y, that is, for which there exists a
  240. -- path f(x) = y.
  241. fiber : {A : Type} {B : Type} -> (A -> B) -> B -> Type
  242. fiber f y = (x : A) * Path (f x) y
  243. -- An *equivalence* is a function where every fiber is contractible.
  244. -- That is, for every point in the codomain y : B, there is exactly one
  245. -- point in the input which f maps to y.
  246. isEquiv : {A : Type} {B : Type} -> (A -> B) -> Type
  247. isEquiv {A} {B} f = (y : B) -> isContr (fiber {A} {B} f y)
  248. -- By extracting this point, which must exist because the fiber is contractible,
  249. -- we can get an inverse of f:
  250. inverse : {A : Type} {B : Type} {f : A -> B} -> isEquiv f -> B -> A
  251. inverse eqv y = (eqv y) .1 .1
  252. -- We can prove that «inverse eqv» is a section of f:
  253. section : {A : Type} {B : Type} (f : A -> B) (eqv : isEquiv f) -> Path (\x -> f (inverse eqv x)) id
  254. section f eqv i y = (eqv y) .1 .2 i
  255. -- Proving that it's also a retraction is left as an exercise to the
  256. -- reader. We can package together a function and a proof that it's an
  257. -- equivalence to get a capital-E Equivalence.
  258. Equiv : (A : Type) (B : Type) -> Type
  259. Equiv A B = (f : A -> B) * isEquiv {A} {B} f
  260. -- The identity function is an equivalence between any type A and
  261. -- itself.
  262. idEquiv : {A : Type} -> isEquiv (id {A})
  263. idEquiv y = ((y, \i -> y), \u i -> (u.2 (inot i), \j -> u.2 (ior (inot i) j)))
  264. -- The glue operation expresses that "extensibility is invariant under
  265. -- equivalence". Less concisely, the Glue type and its constructor,
  266. -- glue, let us extend a partial element of a partial type to a total
  267. -- element of a total type, by "gluing" the partial type T using a
  268. -- partial equivalence e onto a total type A.
  269. -- In particular, we have that when φ = i1, Glue A [i1 -> (T, f)] = T.
  270. primGlue : (A : Type) {phi : I}
  271. (T : Partial phi Type)
  272. (e : PartialP phi (\o -> Equiv (T o) A))
  273. -> Type
  274. {-# PRIMITIVE Glue primGlue #-}
  275. -- The glue constructor extends the partial element t : T to a total
  276. -- element of Glue A [φ -> (T, e)] as long as we have a total im : A
  277. -- which is the image of f(t).
  278. --
  279. -- Agreeing with the condition that Glue A [i1 -> (T, e)] = T,
  280. -- we have that glue {A} {i1} t im => t.
  281. prim'glue : {A : Type} {phi : I} {T : Partial phi Type} {e : PartialP phi (\o -> Equiv (T o) A)}
  282. -> (t : PartialP phi T)
  283. -> (im : Sub A phi (\o -> (e o).1 (t o)))
  284. -> primGlue A T e
  285. {-# PRIMITIVE glue prim'glue #-}
  286. -- The unglue operation undoes a glueing. Since when φ = i1,
  287. -- Glue A [φ -> (T, f)] = T, the argument to primUnglue {A} {i1} ...
  288. -- will have type T, and so to get back an A we need to apply the
  289. -- partial equivalence f (defined everywhere).
  290. primUnglue : {A : Type} {phi : I} {T : Partial phi Type} {e : PartialP phi (\o -> Equiv (T o) A)}
  291. -> primGlue A {phi} T e -> A
  292. {-# PRIMITIVE unglue primUnglue #-}
  293. -- Diagramatically, i : I |- Glue A [(i \/ ~i) -> (T, e)] can be drawn
  294. -- as giving us the dotted line in:
  295. --
  296. -- T i0 ......... T i1
  297. -- | |
  298. -- | |
  299. -- e i0 |~ ~| e i1
  300. -- | |
  301. -- | |
  302. -- A i0 --------- A i1
  303. -- A
  304. --
  305. -- Where the the two "e" sides are equivalences, and the bottom side is
  306. -- the line i : I |- A.
  307. --
  308. -- Thus, by choosing a base type, a set of partial types and partial
  309. -- equivalences, we can make a line between two types (T i0) and (T i1).
  310. Glue : (A : Type) {phi : I} -> Partial phi ((X : Type) * Equiv X A) -> Type
  311. Glue A {phi} u = primGlue A {phi} (\o -> (u o).1) (\o -> (u o).2)
  312. -- For example, we can glue together the type A and the type B as long
  313. -- as there exists an Equiv A B.
  314. --
  315. -- A ............ B
  316. -- | |
  317. -- | |
  318. -- equiv |~ ua equiv ~| idEquiv {B}
  319. -- | |
  320. -- | |
  321. -- B ------------ B
  322. -- \i → B
  323. --
  324. univalence : {A : Type} {B : Type} -> Equiv A B -> Path A B
  325. univalence {A} {B} equiv i =
  326. Glue B (\[ (i = i0) -> (A, equiv),
  327. (i = i1) -> (B, the B, idEquiv {B}) ])
  328. -- The fact that this diagram has 2 filled-in B sides explains the
  329. -- complication in the proof below.
  330. --
  331. -- In particular, the actual behaviour of transp (\i -> univalence f i)
  332. -- (x : A) is not just to apply f x to get a B (the left side), it also
  333. -- needs to:
  334. --
  335. -- * For the bottom side, compose along (\i -> B) (the bottom side)
  336. -- * For the right side, apply the inverse of the identity, which
  337. -- is just identity, to get *some* b : B
  338. --
  339. -- But that b : B might not agree with the sides of the composition
  340. -- operation in a more general case, so it composes along (\i -> B)
  341. -- *again*!
  342. --
  343. -- Thus the proof: a simple cubical argument suffices, since
  344. -- for any composition, its filler connects either endpoints. So
  345. -- we need to come up with a filler for the bottom and right faces.
  346. univalenceBeta : {A : Type} {B : Type} (f : Equiv A B) -> Path (transp (\i -> univalence f i)) f.1
  347. univalenceBeta {A} {B} f i a =
  348. let
  349. -- The bottom left corner
  350. botLeft : B
  351. botLeft = transp (\i -> B) (f.1 a)
  352. -- The "bottom face" filler connects the bottom-left corner, f.1 a,
  353. -- and the bottom-right corner, which is the transport of f.1 a
  354. -- along \i -> B.
  355. botFace : Path (f.1 a) botLeft
  356. botFace i = fill (\i -> B) (\j []) (inS (f.1 a)) i
  357. -- The "right face" filler connects the bottom-right corner and the
  358. -- upper-right corner, which is again a simple transport along
  359. -- \i -> B.
  360. rightFace : Path (transp (\i -> B) botLeft) botLeft
  361. rightFace i = fill (\i -> B) (\j []) (inS botLeft) (inot i)
  362. -- The goal is a path between the bottom-left and top-right corners,
  363. -- which we can get by composing (in the path sense) the bottom and
  364. -- right faces.
  365. goal : Path (transp (\i -> B) botLeft) (f.1 a)
  366. goal = trans rightFace (\i -> botFace (inot i))
  367. in goal i
  368. -- The terms univalence + univalenceBeta suffice to prove the "full"
  369. -- univalence axiom of Voevodsky, as can be seen in the paper
  370. --
  371. -- Ian Orton, & Andrew M. Pitts. (2017). Decomposing the Univalence Axiom.
  372. --
  373. -- Available freely here: https://arxiv.org/abs/1712.04890v3
  374. J : {A : Type} {x : A}
  375. (P : (y : A) -> Path x y -> Type)
  376. (d : P x (\i -> x))
  377. {y : A} (p : Path x y)
  378. -> P y p
  379. J P d p = transp (\i -> P (p i) (\j -> p (iand i j))) d
  380. -- Isomorphisms
  381. ---------------
  382. --
  383. -- Since isomorphisms are a much more convenient notion of equivalence
  384. -- than contractible fibers, it's natural to ask why the CCHM paper, and
  385. -- this implementation following that, decided on the latter for our
  386. -- definition of equivalence.
  387. isIso : {A : Type} -> {B : Type} -> (A -> B) -> Type
  388. isIso {A} {B} f = (g : B -> A) * ((y : B) -> Path (f (g y)) y) * ((x : A) -> Path (g (f x)) x)
  389. -- The reason is that the family of types IsIso is not a proposition!
  390. -- This means that there can be more than one way for a function to be
  391. -- an equivalence. This is Lemma 4.1.1 of the HoTT book.
  392. Iso : Type -> Type -> Type
  393. Iso A B = (f : A -> B) * isIso f
  394. -- Nevertheless, we can prove that any function with an isomorphism
  395. -- structure has contractible fibers, using a cubical argument adapted
  396. -- from CCHM's implementation of cubical type theory:
  397. --
  398. -- https://github.com/mortberg/cubicaltt/blob/master/experiments/isoToEquiv.ctt#L7-L55
  399. IsoToEquiv : {A : Type} {B : Type} -> Iso A B -> Equiv A B
  400. IsoToEquiv {A} {B} iso = (f, \y -> (fCenter y, fIsCenter y)) where
  401. f = iso.1
  402. g = iso.2.1
  403. s = iso.2.2.1
  404. t = iso.2.2.2
  405. lemIso : (y : B) (x0 : A) (x1 : A) (p0 : Path (f x0) y) (p1 : Path (f x1) y)
  406. -> PathP (\i -> fiber f y) (x0, p0) (x1, p1)
  407. lemIso y x0 x1 p0 p1 =
  408. let
  409. rem0 : Path x0 (g y)
  410. rem0 i = comp (\i -> A) (\k [ (i = i0) -> t x0 k, (i = i1) -> g y ]) (inS (g (p0 i)))
  411. rem1 : Path x1 (g y)
  412. rem1 i = comp (\i -> A) (\k [ (i = i0) -> t x1 k, (i = i1) -> g y ]) (inS (g (p1 i)))
  413. p : Path x0 x1
  414. p i = comp (\i -> A) (\k [ (i = i0) -> rem0 (inot k), (i = i1) -> rem1 (inot k) ]) (inS (g y))
  415. fill0 : I -> I -> A
  416. fill0 i j = comp (\i -> A) (\k [ (i = i0) -> t x0 (iand j k)
  417. , (i = i1) -> g y
  418. , (j = i0) -> g (p0 i)
  419. ])
  420. (inS (g (p0 i)))
  421. fill1 : I -> I -> A
  422. fill1 i j = comp (\i -> A) (\k [ (i = i0) -> t x1 (iand j k)
  423. , (i = i1) -> g y
  424. , (j = i0) -> g (p1 i) ])
  425. (inS (g (p1 i)))
  426. fill2 : I -> I -> A
  427. fill2 i j = comp (\i -> A) (\k [ (i = i0) -> rem0 (ior j (inot k))
  428. , (i = i1) -> rem1 (ior j (inot k))
  429. , (j = i1) -> g y ])
  430. (inS (g y))
  431. sq : I -> I -> A
  432. sq i j = comp (\i -> A) (\k [ (i = i0) -> fill0 j (inot k)
  433. , (i = i1) -> fill1 j (inot k)
  434. , (j = i1) -> g y
  435. , (j = i0) -> t (p i) (inot k) ])
  436. (inS (fill2 i j))
  437. sq1 : I -> I -> B
  438. sq1 i j = comp (\i -> B) (\k [ (i = i0) -> s (p0 j) k
  439. , (i = i1) -> s (p1 j) k
  440. , (j = i0) -> s (f (p i)) k
  441. , (j = i1) -> s y k
  442. ])
  443. (inS (f (sq i j)))
  444. in \i -> (p i, \j -> sq1 i j)
  445. fCenter : (y : B) -> fiber f y
  446. fCenter y = (g y, s y)
  447. fIsCenter : (y : B) (w : fiber f y) -> Path (fCenter y) w
  448. fIsCenter y w = lemIso y (fCenter y).1 w.1 (fCenter y).2 w.2
  449. -- We can prove that any involutive function is an isomorphism, since
  450. -- such a function is its own inverse.
  451. involToIso : {A : Type} (f : A -> A) -> ((x : A) -> Path (f (f x)) x) -> isIso f
  452. involToIso {A} f inv = (f, inv, inv)
  453. -- An example of univalence
  454. ---------------------------
  455. --
  456. -- The classic example of univalence is the equivalence
  457. -- not : Bool \simeq Bool.
  458. --
  459. -- We define it here.
  460. data Bool : Type where
  461. true : Bool
  462. false : Bool
  463. not : Bool -> Bool
  464. not = \case
  465. true -> false
  466. false -> true
  467. elimBool : (P : Bool -> Type) -> P true -> P false -> (b : Bool) -> P b
  468. elimBool P x y = \case
  469. true -> x
  470. false -> y
  471. if : {A : Type} -> A -> A -> Bool -> A
  472. if x y = \case
  473. true -> x
  474. false -> y
  475. -- By pattern matching it suffices to prove (not (not true)) ≡ true and
  476. -- not (not false) ≡ false. Since not (not true) computes to true (resp.
  477. -- false), both proofs go through by refl.
  478. notInvol : (x : Bool) -> Path (not (not x)) x
  479. notInvol = elimBool (\b -> Path (not (not b)) b) refl refl
  480. notp : Path Bool Bool
  481. notp = univalence (IsoToEquiv (not, involToIso not notInvol))
  482. -- This path actually serves to prove a simple lemma about the universes
  483. -- of HoTT, namely, that any univalent universe is not a 0-type. If we
  484. -- had HITs, we could prove that this fact holds for any n, but for now,
  485. -- proving it's not an h-set is the furthest we can go.
  486. -- First we define what it means for something to be false. In type theory,
  487. -- we take ¬P = P → ⊥, where the bottom type is the only type satisfying
  488. -- the elimination principle
  489. --
  490. -- elimBottom : (P : bottom -> Type) -> (b : bottom) -> P b
  491. --
  492. -- This follows from setting bottom := ∀ A, A.
  493. bottom : Type
  494. bottom = {A : Type} -> A
  495. elimBottom : (P : bottom -> Type) -> (b : bottom) -> P b
  496. elimBottom P x = x
  497. -- We prove that true != false by transporting along the path
  498. --
  499. -- \i -> if (Bool -> Bool) A (p i)
  500. -- (Bool -> Bool) ------------------------------------ A
  501. --
  502. -- To verify that this has the correct endpoints, check out the endpoints
  503. -- for p:
  504. --
  505. -- true ------------------------------------ false
  506. --
  507. -- and evaluate the if at either end.
  508. trueNotFalse : Path true false -> bottom
  509. trueNotFalse p {A} = transp (\i -> if (Bool -> Bool) A (p i)) id
  510. -- To be an h-Set is to have no "higher path information". Alternatively,
  511. --
  512. -- isHSet A = (x : A) (y : A) -> isHProp (Path x y)
  513. --
  514. isHSet : Type -> Type
  515. isHSet A = {x : A} {y : A} (p : Path x y) (q : Path x y) -> Path p q
  516. -- We can prove *a* contradiction (note: this is a direct proof!) by adversarially
  517. -- choosing two paths p, q that we know are not equal. Since "equal" paths have
  518. -- equal behaviour when transporting, we can choose two paths p, q and a point x
  519. -- such that transporting x along p gives a different result from x along q.
  520. --
  521. -- Since transp notp = not but transp refl = id, that's what we go with. The choice
  522. -- of false as the point x is just from the endpoints of trueNotFalse.
  523. universeNotSet : isHSet Type -> bottom
  524. universeNotSet itIs = trueNotFalse (\i -> transp (\j -> itIs notp refl i j) false)
  525. -- Funext is an inverse of happly
  526. ---------------------------------
  527. --
  528. -- Above we proved function extensionality, namely, that functions
  529. -- pointwise equal everywhere are themselves equal.
  530. -- However, this formulation of the axiom is known as "weak" function
  531. -- extensionality. The strong version is as follows:
  532. Hom : {A : Type} {B : A -> Type} (f : (x : A) -> B x) -> (g : (x : A) -> B x) -> Type
  533. Hom {A} f g = (x : A) -> Path (f x) (g x)
  534. happly : {A : Type} {B : A -> Type} {f : (x : A) -> B x} {g : (x : A) -> B x}
  535. -> (p : Path f g) -> Hom f g
  536. happly p x i = p i x
  537. -- Strong function extensionality: happly is an equivalence.
  538. happlyIsIso : {A : Type} {B : A -> Type} {f : (x : A) -> B x} {g : (x : A) -> B x}
  539. -> isIso {Path f g} {Hom f g} happly
  540. happlyIsIso {A} {B} {f} {g} = (funext {A} {B} {f} {g}, \hom -> refl, \path -> refl)
  541. pathIsHom : {A : Type} {B : A -> Type} {f : (x : A) -> B x} {g : (x : A) -> B x}
  542. -> Path (Path f g) (Hom f g)
  543. pathIsHom {A} {B} {f} {g} =
  544. let
  545. theIso : Iso (Path f g) (Hom f g)
  546. theIso = (happly {A} {B} {f} {g}, happlyIsIso {A} {B} {f} {g})
  547. in univalence (IsoToEquiv theIso)
  548. -- Inductive types
  549. -------------------
  550. --
  551. -- An inductive type is a type freely generated by a finite set of
  552. -- constructors. For instance, the type of natural numbers is generated
  553. -- by the constructors for "zero" and "successor".
  554. data Nat : Type where
  555. zero : Nat
  556. succ : Nat -> Nat
  557. -- Pattern matching allows us to prove that these initial types are
  558. -- initial algebras for their corresponding functors.
  559. Nat_elim : (P : Nat -> Type) -> P zero -> ((x : Nat) -> P x -> P (succ x)) -> (x : Nat) -> P x
  560. Nat_elim P pz ps = \case
  561. zero -> pz
  562. succ x -> ps x (Nat_elim P pz ps x)
  563. -- The type of integers can be defined as A + B, where "pos n" means +n
  564. -- and "neg n" means -(n + 1).
  565. data Int : Type where
  566. pos : Nat -> Int
  567. neg : Nat -> Int
  568. -- On this representation we can define the successor and predecessor
  569. -- functions by (nested) induction.
  570. sucZ : Int -> Int
  571. sucZ = \case
  572. pos n -> pos (succ n)
  573. neg n ->
  574. let suc_neg : Nat -> Int
  575. suc_neg = \case
  576. zero -> pos zero
  577. succ n -> neg n
  578. in suc_neg n
  579. predZ : Int -> Int
  580. predZ = \case
  581. pos n ->
  582. let pred_pos : Nat -> Int
  583. pred_pos = \case
  584. zero -> neg zero
  585. succ n -> pos n
  586. in pred_pos n
  587. neg n -> neg (succ n)
  588. -- And prove that the successor function is an isomorphism, and thus, an
  589. -- equivalence.
  590. sucEquiv : isIso sucZ
  591. sucEquiv =
  592. let
  593. sucPredZ : (x : Int) -> Path (sucZ (predZ x)) x
  594. sucPredZ = \case
  595. pos n ->
  596. let k : (n : Nat) -> Path (sucZ (predZ (pos n))) (pos n)
  597. k = \case
  598. zero -> refl
  599. succ n -> refl
  600. in k n
  601. neg n -> refl
  602. predSucZ : (x : Int) -> Path (predZ (sucZ x)) x
  603. predSucZ = \case
  604. pos n -> refl
  605. neg n ->
  606. let k : (n : Nat) -> Path (predZ (sucZ (neg n))) (neg n)
  607. k = \case
  608. zero -> refl
  609. succ n -> refl
  610. in k n
  611. in (predZ, sucPredZ, predSucZ)
  612. -- Univalence gives us a path between integers such that transp intPath
  613. -- x = suc x, transp (sym intPath) x = pred x
  614. intPath : Path Int Int
  615. intPath = univalence (IsoToEquiv (sucZ, sucEquiv))
  616. -- Higher inductive types
  617. -------------------------
  618. --
  619. -- While inductive types let us generate discrete spaces like the
  620. -- naturals or integers, they do not support defining higher-dimensional
  621. -- structures given by spaces with points and paths.
  622. -- A very simple higher inductive type is the interval, given by
  623. data Interval : Type where
  624. ii0 : Interval
  625. ii1 : Interval
  626. seg i : Interval [ (i = i0) -> ii0, (i = i1) -> ii1 ]
  627. -- This expresses that we have two points ii0 and ii1 and a path (\i ->
  628. -- seg i) with endpoints ii0 and ii1.
  629. -- With this type we can reproduce the proof of Lemma 6.3.2 from the
  630. -- HoTT book:
  631. iFunext : {A : Type} {B : A -> Type} (f : (x : A) -> B x) (g : (x : A) -> B x) -> ((x : A) -> Path (f x) (g x)) -> Path f g
  632. iFunext f g p i = h' (seg i) where
  633. h : (x : A) -> Interval -> B x
  634. h x = \case
  635. ii0 -> f x
  636. ii1 -> g x
  637. seg i -> p x i
  638. h' : Interval -> (x : A) -> B x
  639. h' i x = h x i
  640. -- Of course, Cubical Type Theory also has an interval (pre)type, but
  641. -- that, unlike the Interval here, is not Kan: it has no composition
  642. -- structure.
  643. -- Another simple higher-inductive type is the circle, with a point and
  644. -- a non-trivial loop, (\i -> loop i).
  645. data S1 : Type where
  646. base : S1
  647. loop i : S1 [ (i = i1) -> base, (i = i0) -> base ]
  648. -- By writing a function from the circle to the universe of types Type,
  649. -- we can calculate winding numbers along the circle.
  650. helix : S1 -> Type
  651. helix = \case
  652. base -> Int
  653. loop i -> intPath i
  654. winding : Path base base -> Int
  655. winding p = transp (\i -> helix (p i)) (pos zero)
  656. -- For instance, going around the loop once has a winding number of +1,
  657. windingLoop : Path (winding (\i -> loop i)) (pos (succ zero))
  658. windingLoop = refl
  659. -- Going backwards has a winding number of -1 (remember the
  660. -- representation of integers),
  661. windingSymLoop : Path (winding (\i -> loop (inot i))) (neg zero)
  662. windingSymLoop = refl
  663. -- And going around the trivial loop (\i -> base) goes around the the
  664. -- non-trivial loop (\i -> loop) zero times.
  665. windingBase : Path (winding (\i -> base)) (pos zero)
  666. windingBase = refl
  667. -- One particularly general higher inductive type is the homotopy pushout,
  668. -- which can be seen as a kind of sum B + C with the extra condition that
  669. -- whenever x and y are in the image of f (resp. g), inl x ≡ inr y.
  670. data Pushout {A : Type} {B : Type} {C : Type} (f : A -> B) (g : A -> C) : Type where
  671. inl : (x : B) -> Pushout f g
  672. inr : (y : C) -> Pushout f g
  673. push i : (a : A) -> Pushout f g [ (i = i0) -> inl (f a), (i = i1) -> inr (g a) ]
  674. -- The name is due to the category-theoretical notion of pushout.
  675. -- TODO: finish writing this tomorrow lol
  676. data Susp (A : Type) : Type where
  677. north : Susp A
  678. south : Susp A
  679. merid i : A -> Susp A [ (i = i0) -> north, (i = i1) -> south ]
  680. data Unit : Type where
  681. tt : Unit
  682. poSusp : Type -> Type
  683. poSusp A = Pushout {A} {Unit} {Unit} (\x -> tt) (\x -> tt)
  684. poSusp_to_Susp : {A : Type} -> poSusp A -> Susp A
  685. poSusp_to_Susp = \case
  686. inl x -> north
  687. inr x -> south
  688. push x i -> merid x i
  689. Susp_to_poSusp : {A : Type} -> Susp A -> poSusp A
  690. Susp_to_poSusp = \case
  691. north -> inl tt
  692. south -> inr tt
  693. merid x i -> push x i
  694. Susp_to_poSusp_to_Susp : {A : Type} -> (x : Susp A) -> Path (poSusp_to_Susp (Susp_to_poSusp x)) x
  695. Susp_to_poSusp_to_Susp = \case
  696. north -> refl
  697. south -> refl
  698. merid x i -> refl
  699. unitEta : (x : Unit) -> Path x tt
  700. unitEta = \case tt -> refl
  701. poSusp_to_Susp_to_poSusp : {A : Type} -> (x : poSusp A) -> Path (Susp_to_poSusp (poSusp_to_Susp x)) x
  702. poSusp_to_Susp_to_poSusp {A} = \case
  703. inl x -> cong inl (sym (unitEta x))
  704. inr x -> cong inr (sym (unitEta x))
  705. push x i -> refl
  706. Susp_is_poSusp : {A : Type} -> Path (Susp A) (poSusp A)
  707. Susp_is_poSusp {A} = univalence (IsoToEquiv (Susp_to_poSusp {A}, poSusp_to_Susp {A}, poSusp_to_Susp_to_poSusp {A}, Susp_to_poSusp_to_Susp {A}))