less prototype, less bad code implementation of CCHM type theory
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

690 lines
24 KiB

  1. -- We begin by adding some primitive bindings using the PRIMITIVE pragma.
  2. --
  3. -- It goes like this: PRIMITIVE primName varName.
  4. --
  5. -- If the varName is dropped, then it's taken to be the same as primName.
  6. --
  7. -- If there is a previous declaration for the varName, then the type
  8. -- is checked against the internally-known "proper" type for the primitive.
  9. -- Universe of fibrant types
  10. {-# PRIMITIVE Type #-}
  11. -- Universe of non-fibrant types
  12. {-# PRIMITIVE Pretype #-}
  13. -- Fibrant is a fancy word for "has a composition structure". Most types
  14. -- we inherit from MLTT are fibrant:
  15. --
  16. -- Stuff like products Π, sums Σ, naturals, booleans, lists, etc., all
  17. -- have composition structures.
  18. --
  19. -- The non-fibrant types are part of the structure of cubical
  20. -- categories: The interval, partial elements, cubical subtypes, ...
  21. -- The interval
  22. ---------------
  23. -- The interval has two endpoints i0 and i1.
  24. -- These form a de Morgan algebra.
  25. I : Pretype
  26. {-# PRIMITIVE Interval I #-}
  27. i0, i1 : I
  28. {-# PRIMITIVE i0 #-}
  29. {-# PRIMITIVE i1 #-}
  30. -- "minimum" on the interval
  31. iand : I -> I -> I
  32. {-# PRIMITIVE iand #-}
  33. -- "maximum" on the interval.
  34. ior : I -> I -> I
  35. {-# PRIMITIVE ior #-}
  36. -- The interpretation of iand as min and ior as max justifies the fact that
  37. -- ior i (inot i) != i1, since that equality only holds for the endpoints.
  38. -- inot i = 1 - i is a de Morgan involution.
  39. inot : I -> I
  40. {-# PRIMITIVE inot #-}
  41. -- Paths
  42. --------
  43. -- Since every function in type theory is internally continuous,
  44. -- and the two endpoints i0 and i1 are equal, we can take the type of
  45. -- equalities to be continuous functions out of the interval.
  46. -- That is, x ≡ y iff. ∃ f : I -> A, f i0 = x, f i1 = y.
  47. -- The type PathP generalises this to dependent products (i : I) -> A i.
  48. PathP : (A : I -> Type) -> A i0 -> A i1 -> Type
  49. {-# PRIMITIVE PathP #-}
  50. -- By taking the first argument to be constant we get the equality type
  51. -- Path.
  52. Path : {A : Type} -> A -> A -> Type
  53. Path {A} = PathP (\i -> A)
  54. -- reflexivity is given by constant paths
  55. refl : {A : Type} {x : A} -> Path x x
  56. refl {A} {x} i = x
  57. -- Symmetry (for dpeendent paths) is given by inverting the argument to the path, such that
  58. -- sym p i0 = p (inot i0) = p i1
  59. -- sym p i1 = p (inot i1) = p i0
  60. -- This has the correct endpoints.
  61. sym : {A : I -> Type} {x : A i0} {y : A i1} -> PathP A x y -> PathP (\i -> A (inot i)) y x
  62. sym p i = p (inot i)
  63. id : {A : Type} -> A -> A
  64. id x = x
  65. the : (A : Type) -> A -> A
  66. the A x = x
  67. -- The eliminator for the interval says that if you have x : A i0 and y : A i1,
  68. -- and x ≡ y, then you can get a proof A i for every element of the interval.
  69. iElim : {A : I -> Type} {x : A i0} {y : A i1} -> PathP A x y -> (i : I) -> A i
  70. iElim p i = p i
  71. -- This corresponds to the elimination principle for the HIT
  72. -- data I : Pretype where
  73. -- i0 i1 : I
  74. -- seg : i0 ≡ i1
  75. -- The singleton subtype of A at x is the type of elements of y which
  76. -- are equal to x.
  77. Singl : (A : Type) -> A -> Type
  78. Singl A x = (y : A) * Path x y
  79. -- Contractible types are those for which there exists an element to which
  80. -- all others are equal.
  81. isContr : Type -> Type
  82. isContr A = (x : A) * ((y : A) -> Path x y)
  83. -- Using the connection \i j -> y.2 (iand i j), we can prove that
  84. -- singletons are contracible. Together with transport later on,
  85. -- we get the J elimination principle of paths.
  86. singContr : {A : Type} {a : A} -> isContr (Singl A a)
  87. singContr {A} {a} = ((a, \i -> a), \y i -> (y.2 i, \j -> y.2 (iand i j)))
  88. -- Some more operations on paths. By rearranging parentheses we get a
  89. -- proof that the images of equal elements are themselves equal.
  90. cong : {A : Type} {B : A -> Type} (f : (x : A) -> B x) {x : A} {y : A} (p : Path x y) -> PathP (\i -> B (p i)) (f x) (f y)
  91. cong f p i = f (p i)
  92. -- These satisfy definitional equalities, like congComp and congId, which are
  93. -- propositional in vanilla MLTT.
  94. congComp : {A : Type} {B : Type} {C : Type}
  95. {f : A -> B} {g : B -> C} {x : A} {y : A}
  96. (p : Path x y)
  97. -> Path (cong g (cong f p)) (cong (\x -> g (f x)) p)
  98. congComp p = refl
  99. congId : {A : Type} {x : A} {y : A}
  100. (p : Path x y)
  101. -> Path (cong (id {A}) p) p
  102. congId p = refl
  103. -- Just like rearranging parentheses gives us cong, swapping the value
  104. -- and interval binders gives us function extensionality.
  105. funext : {A : Type} {B : A -> Type} {f : (x : A) -> B x} {g : (x : A) -> B x}
  106. (h : (x : A) -> Path (f x) (g x))
  107. -> Path f g
  108. funext h i x = h x i
  109. -- The proposition associated with an element of the interval
  110. -------------------------------------------------------------
  111. -- Associated with every element i : I of the interval, we have the type
  112. -- IsOne i which is inhabited only when i = i1. In the model, this
  113. -- corresponds to the map [φ] from the interval cubical set to the
  114. -- subobject classifier.
  115. IsOne : I -> Pretype
  116. {-# PRIMITIVE IsOne #-}
  117. -- The value itIs1 witnesses the fact that i1 = i1.
  118. itIs1 : IsOne i1
  119. -- Furthermore, if either of i or j are one, then so is (i or j).
  120. isOneL : {i : I} {j : I} -> IsOne i -> IsOne (ior i j)
  121. isOneR : {i : I} {j : I} -> IsOne j -> IsOne (ior i j)
  122. {-# PRIMITIVE itIs1 #-}
  123. {-# PRIMITIVE isOneL #-}
  124. {-# PRIMITIVE isOneR #-}
  125. -- Partial elements
  126. -------------------
  127. --
  128. -- Since a function I -> A has two endpoints, and a function I -> I -> A
  129. -- has four endpoints + four functions I -> A as "sides" (obtained by
  130. -- varying argument while holding the other as a bound variable), we
  131. -- refer to elements of I^n -> A as "cubes".
  132. -- This justifies the existence of partial elements, which are, as the
  133. -- name implies, partial cubes. Namely, a Partial φ A is an element of A
  134. -- which depends on a proof that IsOne φ.
  135. Partial : I -> Type -> Pretype
  136. {-# PRIMITIVE Partial #-}
  137. -- There is also a dependent version where the type A is itself a
  138. -- partial element.
  139. PartialP : (phi : I) -> Partial phi Type -> Pretype
  140. {-# PRIMITIVE PartialP #-}
  141. -- Why is Partial φ A not just defined as φ -> A? The difference is that
  142. -- Partial φ A has an internal representation which definitionally relates
  143. -- any two partial elements which "agree everywhere", that is, have
  144. -- equivalent values for every possible assignment of variables which
  145. -- makes IsOne φ hold.
  146. -- Cubical Subtypes
  147. --------------------
  148. -- Given A : Type, phi : I, and a partial element u : A defined on φ,
  149. -- we have the type Sub A phi u, notated A[phi -> u] in the output of
  150. -- the type checker, whose elements are "extensions" of u.
  151. -- That is, element of A[phi -> u] is an element of A defined everywhere
  152. -- (a total element), which, when IsOne φ, agrees with u.
  153. Sub : (A : Type) (phi : I) -> Partial phi A -> Pretype
  154. {-# PRIMITIVE Sub #-}
  155. -- Every total element u : A can be made partial on φ by ignoring the
  156. -- constraint. Furthermore, this "totally partial" element agrees with
  157. -- the original total element on φ.
  158. inS : {A : Type} {phi : I} (u : A) -> Sub A phi (\x -> u)
  159. {-# PRIMITIVE inS #-}
  160. -- When IsOne φ, outS {A} {φ} {u} x reduces to u itIs1.
  161. -- This implements the fact that x agrees with u on φ.
  162. outS : {A : Type} {phi : I} {u : Partial phi A} -> Sub A phi u -> A
  163. {-# PRIMITIVE outS #-}
  164. -- The composition operation
  165. ----------------------------
  166. -- Now that we have syntax for specifying partial cubes,
  167. -- and specifying that an element agrees with a partial cube,
  168. -- we can describe the composition operation.
  169. comp : (A : I -> Type) {phi : I} (u : (i : I) -> Partial phi (A i)) -> Sub (A i0) phi (u i0) -> A i1
  170. {-# PRIMITIVE comp #-}
  171. -- In particular, when φ is a disjunction of the form
  172. -- (j = 0) || (j = 1), we can draw u as being a pair of lines forming a
  173. -- "tube", an open square with no floor or roof:
  174. --
  175. -- Given u = \j [ (i = i0) -> x, (i = i1) -> q j] on the extent i || ~i,
  176. -- we draw:
  177. --
  178. -- x q i1
  179. -- | |
  180. -- \j -> x | | \j -> q j
  181. -- | |
  182. -- x q i0
  183. --
  184. -- The composition operation says that, as long as we can provide a
  185. -- "floor" connecting x -- q i0, as a total element of A which, on
  186. -- phi, extends u i0, then we get the "roof" connecting x and q i1
  187. -- for free.
  188. --
  189. -- If we have a path p : x ≡ y, and q : y ≡ z, then we do get the
  190. -- "floor", and composition gets us the dotted line:
  191. --
  192. -- x..........z
  193. -- | |
  194. -- x | | q j
  195. -- | |
  196. -- x----------y
  197. -- p i
  198. trans : {A : Type} {x : A} {y : A} {z : A} -> PathP (\i -> A) x y -> PathP (\i -> A) y z -> PathP (\i -> A) x z
  199. trans {A} {x} p q i =
  200. comp (\i -> A)
  201. {ior i (inot i)}
  202. (\j [ (i = i0) -> x, (i = i1) -> q j ])
  203. (inS (p i))
  204. -- In particular when the formula φ = i0 we get the "opposite face" to a
  205. -- single point, which corresponds to transport.
  206. transp : (A : I -> Type) (x : A i0) -> A i1
  207. transp A x = comp A {i0} (\i [ ]) (inS x)
  208. -- Since we have the iand operator, we can also derive the *filler* of a cube,
  209. -- which connects the given face and the output of composition.
  210. fill : (A : I -> Type) {phi : I} (u : (i : I) -> Partial phi (A i)) -> Sub (A i0) phi (u i0) -> (i : I) -> A i
  211. fill A {phi} u a0 i =
  212. comp (\j -> A (iand i j))
  213. {ior phi (inot i)}
  214. (\j [ (phi = i1) as p -> u (iand i j) p, (i = i0) -> outS a0 ])
  215. (inS (outS a0))
  216. hfill : {A : Type} {phi : I} (u : (i : I) -> Partial phi A) -> Sub A phi (u i0) -> I -> A
  217. hfill {A} {phi} u a0 i = fill (\i -> A) {phi} u a0 i
  218. hcomp : {A : Type} {phi : I} (u : (i : I) -> Partial phi A) -> Sub A phi (u i0) -> A
  219. hcomp {A} {phi} u a0 = comp (\i -> A) {phi} u a0
  220. -- For instance, the filler of the previous composition square
  221. -- tells us that trans p refl = p:
  222. transRefl : {A : Type} {x : A} {y : A} (p : Path x y) -> Path (trans p refl) p
  223. transRefl p j i = fill (\i -> A) {ior i (inot i)} (\k [ (i = i0) -> x, (i = i1) -> y ]) (inS (p i)) (inot j)
  224. -- Reduction of composition
  225. ---------------------------
  226. --
  227. -- Composition reduces on the structure of the family A : I -> Type to create
  228. -- the element a1 : (A i1)[phi -> u i1].
  229. --
  230. -- For instance, when filling a cube of functions, the behaviour is to
  231. -- first transport backwards along the domain, apply the function, then
  232. -- forwards along the codomain.
  233. transpFun : {A : Type} {B : Type} {C : Type} {D : Type} (p : Path A B) (q : Path C D)
  234. -> (f : A -> C) -> Path (transp (\i -> p i -> q i) f)
  235. (\x -> transp (\i -> q i) (f (transp (\i -> p (inot i)) x)))
  236. transpFun p q f = refl
  237. -- When considering the more general case of a composition respecing sides,
  238. -- the outer transport becomes a composition.
  239. -- Glueing and Univalence
  240. -------------------------
  241. -- First, let's get some definitions out of the way.
  242. --
  243. -- The *fiber* of a function f : A -> B at a point y : B is the type of
  244. -- inputs x : A which f takes to y, that is, for which there exists a
  245. -- path f(x) = y.
  246. fiber : {A : Type} {B : Type} -> (A -> B) -> B -> Type
  247. fiber f y = (x : A) * Path (f x) y
  248. -- An *equivalence* is a function where every fiber is contractible.
  249. -- That is, for every point in the codomain y : B, there is exactly one
  250. -- point in the input which f maps to y.
  251. isEquiv : {A : Type} {B : Type} -> (A -> B) -> Type
  252. isEquiv {A} {B} f = (y : B) -> isContr (fiber {A} {B} f y)
  253. -- By extracting this point, which must exist because the fiber is contractible,
  254. -- we can get an inverse of f:
  255. inverse : {A : Type} {B : Type} {f : A -> B} -> isEquiv f -> B -> A
  256. inverse eqv y = (eqv y) .1 .1
  257. -- We can prove that «inverse eqv» is a section of f:
  258. section : {A : Type} {B : Type} (f : A -> B) (eqv : isEquiv f) -> Path (\x -> f (inverse eqv x)) id
  259. section f eqv i y = (eqv y) .1 .2 i
  260. -- Proving that it's also a retraction is left as an exercise to the
  261. -- reader. We can package together a function and a proof that it's an
  262. -- equivalence to get a capital-E Equivalence.
  263. Equiv : (A : Type) (B : Type) -> Type
  264. Equiv A B = (f : A -> B) * isEquiv {A} {B} f
  265. -- The identity function is an equivalence between any type A and
  266. -- itself.
  267. idEquiv : {A : Type} -> isEquiv (id {A})
  268. idEquiv y = ((y, \i -> y), \u i -> (u.2 (inot i), \j -> u.2 (ior (inot i) j)))
  269. -- The glue operation expresses that "extensibility is invariant under
  270. -- equivalence". Less concisely, the Glue type and its constructor,
  271. -- glue, let us extend a partial element of a partial type to a total
  272. -- element of a total type, by "gluing" the partial type T using a
  273. -- partial equivalence e onto a total type A.
  274. -- In particular, we have that when φ = i1, Glue A [i1 -> (T, f)] = T.
  275. primGlue : (A : Type) {phi : I}
  276. (T : Partial phi Type)
  277. (e : PartialP phi (\o -> Equiv (T o) A))
  278. -> Type
  279. {-# PRIMITIVE Glue primGlue #-}
  280. -- The glue constructor extends the partial element t : T to a total
  281. -- element of Glue A [φ -> (T, e)] as long as we have a total im : A
  282. -- which is the image of f(t).
  283. --
  284. -- Agreeing with the condition that Glue A [i1 -> (T, e)] = T,
  285. -- we have that glue {A} {i1} t im => t.
  286. prim'glue : {A : Type} {phi : I} {T : Partial phi Type} {e : PartialP phi (\o -> Equiv (T o) A)}
  287. -> (t : PartialP phi T)
  288. -> (im : Sub A phi (\o -> (e o).1 (t o)))
  289. -> primGlue A T e
  290. {-# PRIMITIVE glue prim'glue #-}
  291. -- The unglue operation undoes a glueing. Since when φ = i1,
  292. -- Glue A [φ -> (T, f)] = T, the argument to primUnglue {A} {i1} ...
  293. -- will have type T, and so to get back an A we need to apply the
  294. -- partial equivalence f (defined everywhere).
  295. primUnglue : {A : Type} {phi : I} {T : Partial phi Type} {e : PartialP phi (\o -> Equiv (T o) A)}
  296. -> primGlue A {phi} T e -> A
  297. {-# PRIMITIVE unglue primUnglue #-}
  298. -- Diagramatically, i : I |- Glue A [(i \/ ~i) -> (T, e)] can be drawn
  299. -- as giving us the dotted line in:
  300. --
  301. -- T i0 ......... T i1
  302. -- | |
  303. -- | |
  304. -- e i0 |~ ~| e i1
  305. -- | |
  306. -- | |
  307. -- A i0 --------- A i1
  308. -- A
  309. --
  310. -- Where the the two "e" sides are equivalences, and the bottom side is
  311. -- the line i : I |- A.
  312. --
  313. -- Thus, by choosing a base type, a set of partial types and partial
  314. -- equivalences, we can make a line between two types (T i0) and (T i1).
  315. Glue : (A : Type) {phi : I} -> Partial phi ((X : Type) * Equiv X A) -> Type
  316. Glue A {phi} u = primGlue A {phi} (\o -> (u o).1) (\o -> (u o).2)
  317. -- For example, we can glue together the type A and the type B as long
  318. -- as there exists an Equiv A B.
  319. --
  320. -- A ............ B
  321. -- | |
  322. -- | |
  323. -- equiv |~ ua equiv ~| idEquiv {B}
  324. -- | |
  325. -- | |
  326. -- B ------------ B
  327. -- \i → B
  328. --
  329. univalence : {A : Type} {B : Type} -> Equiv A B -> Path A B
  330. univalence {A} {B} equiv i =
  331. Glue B (\[ (i = i0) -> (A, equiv),
  332. (i = i1) -> (B, the B, idEquiv {B}) ])
  333. -- The fact that this diagram has 2 filled-in B sides explains the
  334. -- complication in the proof below.
  335. --
  336. -- In particular, the actual behaviour of transp (\i -> univalence f i)
  337. -- (x : A) is not just to apply f x to get a B (the left side), it also
  338. -- needs to:
  339. --
  340. -- * For the bottom side, compose along (\i -> B) (the bottom side)
  341. -- * For the right side, apply the inverse of the identity, which
  342. -- is just identity, to get *some* b : B
  343. --
  344. -- But that b : B might not agree with the sides of the composition
  345. -- operation in a more general case, so it composes along (\i -> B)
  346. -- *again*!
  347. --
  348. -- Thus the proof: a simple cubical argument suffices, since
  349. -- for any composition, its filler connects either endpoints. So
  350. -- we need to come up with a filler for the bottom and right faces.
  351. univalenceBeta : {A : Type} {B : Type} (f : Equiv A B) -> Path (transp (\i -> univalence f i)) f.1
  352. univalenceBeta {A} {B} f i a =
  353. let
  354. -- The bottom left corner
  355. botLeft : B
  356. botLeft = transp (\i -> B) (f.1 a)
  357. -- The "bottom face" filler connects the bottom-left corner, f.1 a,
  358. -- and the bottom-right corner, which is the transport of f.1 a
  359. -- along \i -> B.
  360. botFace : Path (f.1 a) botLeft
  361. botFace i = fill (\i -> B) (\j []) (inS (f.1 a)) i
  362. -- The "right face" filler connects the bottom-right corner and the
  363. -- upper-right corner, which is again a simple transport along
  364. -- \i -> B.
  365. rightFace : Path (transp (\i -> B) botLeft) botLeft
  366. rightFace i = fill (\i -> B) (\j []) (inS botLeft) (inot i)
  367. -- The goal is a path between the bottom-left and top-right corners,
  368. -- which we can get by composing (in the path sense) the bottom and
  369. -- right faces.
  370. goal : Path (transp (\i -> B) botLeft) (f.1 a)
  371. goal = trans rightFace (\i -> botFace (inot i))
  372. in goal i
  373. -- The terms univalence + univalenceBeta suffice to prove the "full"
  374. -- univalence axiom of Voevodsky, as can be seen in the paper
  375. --
  376. -- Ian Orton, & Andrew M. Pitts. (2017). Decomposing the Univalence Axiom.
  377. --
  378. -- Available freely here: https://arxiv.org/abs/1712.04890v3
  379. J : {A : Type} {x : A}
  380. (P : (y : A) -> Path x y -> Type)
  381. (d : P x (\i -> x))
  382. {y : A} (p : Path x y)
  383. -> P y p
  384. J P d p = transp (\i -> P (p i) (\j -> p (iand i j))) d
  385. -- Isomorphisms
  386. ---------------
  387. --
  388. -- Since isomorphisms are a much more convenient notion of equivalence
  389. -- than contractible fibers, it's natural to ask why the CCHM paper, and
  390. -- this implementation following that, decided on the latter for our
  391. -- definition of equivalence.
  392. isIso : {A : Type} -> {B : Type} -> (A -> B) -> Type
  393. isIso {A} {B} f = (g : B -> A) * ((y : B) -> Path (f (g y)) y) * ((x : A) -> Path (g (f x)) x)
  394. -- The reason is that the family of types IsIso is not a proposition!
  395. -- This means that there can be more than one way for a function to be
  396. -- an equivalence. This is Lemma 4.1.1 of the HoTT book.
  397. Iso : Type -> Type -> Type
  398. Iso A B = (f : A -> B) * isIso f
  399. -- Nevertheless, we can prove that any function with an isomorphism
  400. -- structure has contractible fibers, using a cubical argument adapted
  401. -- from CCHM's implementation of cubical type theory:
  402. --
  403. -- https://github.com/mortberg/cubicaltt/blob/master/experiments/isoToEquiv.ctt#L7-L55
  404. IsoToEquiv : {A : Type} {B : Type} -> Iso A B -> Equiv A B
  405. IsoToEquiv {A} {B} iso =
  406. let
  407. f = iso.1
  408. g = iso.2.1
  409. s = iso.2.2.1
  410. t = iso.2.2.2
  411. lemIso : (y : B) (x0 : A) (x1 : A) (p0 : Path (f x0) y) (p1 : Path (f x1) y)
  412. -> PathP (\i -> fiber f y) (x0, p0) (x1, p1)
  413. lemIso y x0 x1 p0 p1 =
  414. let
  415. rem0 : Path x0 (g y)
  416. rem0 i = comp (\i -> A) (\k [ (i = i0) -> t x0 k, (i = i1) -> g y ]) (inS (g (p0 i)))
  417. rem1 : Path x1 (g y)
  418. rem1 i = comp (\i -> A) (\k [ (i = i0) -> t x1 k, (i = i1) -> g y ]) (inS (g (p1 i)))
  419. p : Path x0 x1
  420. p i = comp (\i -> A) (\k [ (i = i0) -> rem0 (inot k), (i = i1) -> rem1 (inot k) ]) (inS (g y))
  421. fill0 : I -> I -> A
  422. fill0 i j = comp (\i -> A) (\k [ (i = i0) -> t x0 (iand j k)
  423. , (i = i1) -> g y
  424. , (j = i0) -> g (p0 i)
  425. ])
  426. (inS (g (p0 i)))
  427. fill1 : I -> I -> A
  428. fill1 i j = comp (\i -> A) (\k [ (i = i0) -> t x1 (iand j k)
  429. , (i = i1) -> g y
  430. , (j = i0) -> g (p1 i) ])
  431. (inS (g (p1 i)))
  432. fill2 : I -> I -> A
  433. fill2 i j = comp (\i -> A) (\k [ (i = i0) -> rem0 (ior j (inot k))
  434. , (i = i1) -> rem1 (ior j (inot k))
  435. , (j = i1) -> g y ])
  436. (inS (g y))
  437. sq : I -> I -> A
  438. sq i j = comp (\i -> A) (\k [ (i = i0) -> fill0 j (inot k)
  439. , (i = i1) -> fill1 j (inot k)
  440. , (j = i1) -> g y
  441. , (j = i0) -> t (p i) (inot k) ])
  442. (inS (fill2 i j))
  443. sq1 : I -> I -> B
  444. sq1 i j = comp (\i -> B) (\k [ (i = i0) -> s (p0 j) k
  445. , (i = i1) -> s (p1 j) k
  446. , (j = i0) -> s (f (p i)) k
  447. , (j = i1) -> s y k
  448. ])
  449. (inS (f (sq i j)))
  450. in \i -> (p i, \j -> sq1 i j)
  451. fCenter : (y : B) -> fiber f y
  452. fCenter y = (g y, s y)
  453. fIsCenter : (y : B) (w : fiber f y) -> Path (fCenter y) w
  454. fIsCenter y w = lemIso y (fCenter y).1 w.1 (fCenter y).2 w.2
  455. in (f, \y -> (fCenter y, fIsCenter y))
  456. -- We can prove that any involutive function is an isomorphism, since
  457. -- such a function is its own inverse.
  458. involToIso : {A : Type} (f : A -> A) -> ((x : A) -> Path (f (f x)) x) -> isIso f
  459. involToIso {A} f inv = (f, inv, inv)
  460. -- An example of univalence
  461. ---------------------------
  462. --
  463. -- The classic example of univalence is the equivalence
  464. -- not : Bool \simeq Bool.
  465. --
  466. -- We define it here.
  467. Bool : Type
  468. {-# PRIMITIVE Bool #-}
  469. true, false : Bool
  470. {-# PRIMITIVE true #-}
  471. {-# PRIMITIVE false #-}
  472. -- Pattern matching for booleans: If a proposition holds for true and
  473. -- for false, then it holds for every bool.
  474. elimBool : (P : Bool -> Type) -> P true -> P false -> (b : Bool) -> P b
  475. {-# PRIMITIVE if elimBool #-}
  476. -- Non-dependent elimination of booleans
  477. if : {A : Type} -> A -> A -> Bool -> A
  478. if {A} = elimBool (\b -> A)
  479. not : Bool -> Bool
  480. not = if false true
  481. -- By pattern matching it suffices to prove (not (not true)) ≡ true and
  482. -- not (not false) ≡ false. Since not (not true) computes to true (resp.
  483. -- false), both proofs go through by refl.
  484. notInvol : (x : Bool) -> Path (not (not x)) x
  485. notInvol = elimBool (\b -> Path (not (not b)) b) refl refl
  486. notp : Path Bool Bool
  487. notp = univalence (IsoToEquiv (not, involToIso not notInvol))
  488. -- This path actually serves to prove a simple lemma about the universes
  489. -- of HoTT, namely, that any univalent universe is not a 0-type. If we
  490. -- had HITs, we could prove that this fact holds for any n, but for now,
  491. -- proving it's not an h-set is the furthest we can go.
  492. -- First we define what it means for something to be false. In type theory,
  493. -- we take ¬P = P → ⊥, where the bottom type is the only type satisfying
  494. -- the elimination principle
  495. --
  496. -- elimBottom : (P : bottom -> Type) -> (b : bottom) -> P b
  497. --
  498. -- This follows from setting bottom := ∀ A, A.
  499. bottom : Type
  500. bottom = {A : Type} -> A
  501. elimBottom : (P : bottom -> Type) -> (b : bottom) -> P b
  502. elimBottom P x = x
  503. -- We prove that true != false by transporting along the path
  504. --
  505. -- \i -> if (Bool -> Bool) A (p i)
  506. -- (Bool -> Bool) ------------------------------------ A
  507. --
  508. -- To verify that this has the correct endpoints, check out the endpoints
  509. -- for p:
  510. --
  511. -- true ------------------------------------ false
  512. --
  513. -- and evaluate the if at either end.
  514. trueNotFalse : Path true false -> bottom
  515. trueNotFalse p {A} = transp (\i -> if (Bool -> Bool) A (p i)) id
  516. -- To be an h-Set is to have no "higher path information". Alternatively,
  517. --
  518. -- isHSet A = (x : A) (y : A) -> isHProp (Path x y)
  519. --
  520. isHSet : Type -> Type
  521. isHSet A = {x : A} {y : A} (p : Path x y) (q : Path x y) -> Path p q
  522. -- We can prove *a* contradiction (note: this is a direct proof!) by adversarially
  523. -- choosing two paths p, q that we know are not equal. Since "equal" paths have
  524. -- equal behaviour when transporting, we can choose two paths p, q and a point x
  525. -- such that transporting x along p gives a different result from x along q.
  526. --
  527. -- Since transp notp = not but transp refl = id, that's what we go with. The choice
  528. -- of false as the point x is just from the endpoints of trueNotFalse.
  529. universeNotSet : isHSet Type -> bottom
  530. universeNotSet itIs = trueNotFalse (\i -> transp (\j -> itIs notp refl i j) false)
  531. -- Funext is an inverse of happly
  532. ---------------------------------
  533. --
  534. -- Above we proved function extensionality, namely, that functions
  535. -- pointwise equal everywhere are themselves equal.
  536. -- However, this formulation of the axiom is known as "weak" function
  537. -- extensionality. The strong version is as follows:
  538. Hom : {A : Type} {B : A -> Type} (f : (x : A) -> B x) -> (g : (x : A) -> B x) -> Type
  539. Hom {A} f g = (x : A) -> Path (f x) (g x)
  540. happly : {A : Type} {B : A -> Type} {f : (x : A) -> B x} {g : (x : A) -> B x}
  541. -> (p : Path f g) -> Hom f g
  542. happly p x i = p i x
  543. -- Strong function extensionality: happly is an equivalence.
  544. happlyIsIso : {A : Type} {B : A -> Type} {f : (x : A) -> B x} {g : (x : A) -> B x}
  545. -> isIso {Path f g} {Hom f g} happly
  546. happlyIsIso {A} {B} {f} {g} = (funext {A} {B} {f} {g}, \hom -> refl, \path -> refl)
  547. pathIsHom : {A : Type} {B : A -> Type} {f : (x : A) -> B x} {g : (x : A) -> B x}
  548. -> Path (Path f g) (Hom f g)
  549. pathIsHom {A} {B} {f} {g} =
  550. let
  551. theIso : Iso (Path f g) (Hom f g)
  552. theIso = (happly {A} {B} {f} {g}, happlyIsIso {A} {B} {f} {g})
  553. in univalence (IsoToEquiv theIso)