|
|
- -- We begin by adding some primitive bindings using the PRIMITIVE pragma.
- --
- -- It goes like this: PRIMITIVE primName varName.
- --
- -- If the varName is dropped, then it's taken to be the same as primName.
- --
- -- If there is a previous declaration for the varName, then the type
- -- is checked against the internally-known "proper" type for the primitive.
-
- -- Universe of fibrant types
- {-# PRIMITIVE Type #-}
-
- -- Universe of non-fibrant types
- {-# PRIMITIVE Pretype #-}
-
- -- Fibrant is a fancy word for "has a composition structure". Most types
- -- we inherit from MLTT are fibrant:
- --
- -- Stuff like products Π, sums Σ, naturals, booleans, lists, etc., all
- -- have composition structures.
- --
- -- The non-fibrant types are part of the structure of cubical
- -- categories: The interval, partial elements, cubical subtypes, ...
-
- -- The interval
- ---------------
-
- -- The interval has two endpoints i0 and i1.
- -- These form a de Morgan algebra.
- I : Pretype
- {-# PRIMITIVE Interval I #-}
-
- i0, i1 : I
- {-# PRIMITIVE i0 #-}
- {-# PRIMITIVE i1 #-}
-
- -- "minimum" on the interval
- iand : I -> I -> I
- {-# PRIMITIVE iand #-}
-
- -- "maximum" on the interval.
- ior : I -> I -> I
- {-# PRIMITIVE ior #-}
-
- -- The interpretation of iand as min and ior as max justifies the fact that
- -- ior i (inot i) != i1, since that equality only holds for the endpoints.
-
- -- inot i = 1 - i is a de Morgan involution.
- inot : I -> I
- {-# PRIMITIVE inot #-}
-
- -- Paths
- --------
-
- -- Since every function in type theory is internally continuous,
- -- and the two endpoints i0 and i1 are equal, we can take the type of
- -- equalities to be continuous functions out of the interval.
- -- That is, x ≡ y iff. ∃ f : I -> A, f i0 = x, f i1 = y.
-
- -- The type PathP generalises this to dependent products (i : I) -> A i.
-
- PathP : (A : I -> Pretype) -> A i0 -> A i1 -> Type
- {-# PRIMITIVE PathP #-}
-
- -- By taking the first argument to be constant we get the equality type
- -- Path.
-
- Path : {A : Pretype} -> A -> A -> Type
- Path {A} = PathP (\i -> A)
-
- -- reflexivity is given by constant paths
-
- refl : {A : Pretype} {x : A} -> Path x x
- refl {A} {x} i = x
-
- -- Symmetry (for dpeendent paths) is given by inverting the argument to the path, such that
- -- sym p i0 = p (inot i0) = p i1
- -- sym p i1 = p (inot i1) = p i0
- -- This has the correct endpoints.
-
- sym : {A : I -> Pretype} {x : A i0} {y : A i1} -> PathP A x y -> PathP (\i -> A (inot i)) y x
- sym p i = p (inot i)
-
- id : {A : Type} -> A -> A
- id x = x
-
- the : (A : Pretype) -> A -> A
- the A x = x
-
- -- The eliminator for the interval says that if you have x : A i0 and y : A i1,
- -- and x ≡ y, then you can get a proof A i for every element of the interval.
- iElim : {A : I -> Pretype} {x : A i0} {y : A i1} -> PathP A x y -> (i : I) -> A i
- iElim p i = p i
-
- -- This corresponds to the elimination principle for the HIT
- -- data I : Pretype where
- -- i0 i1 : I
- -- seg : i0 ≡ i1
-
- -- The singleton subtype of A at x is the type of elements of y which
- -- are equal to x.
- Singl : (A : Type) -> A -> Type
- Singl A x = (y : A) * Path x y
-
- -- Contractible types are those for which there exists an element to which
- -- all others are equal.
- isContr : Type -> Type
- isContr A = (x : A) * ((y : A) -> Path x y)
-
- -- Using the connection \i j -> y.2 (iand i j), we can prove that
- -- singletons are contracible. Together with transport later on,
- -- we get the J elimination principle of paths.
- singContr : {A : Type} {a : A} -> isContr (Singl A a)
- singContr {A} {a} = ((a, \i -> a), \y i -> (y.2 i, \j -> y.2 (iand i j)))
-
- -- Some more operations on paths. By rearranging parentheses we get a
- -- proof that the images of equal elements are themselves equal.
- cong : {A : Type} {B : A -> Type} (f : (x : A) -> B x) {x : A} {y : A} (p : Path x y) -> PathP (\i -> B (p i)) (f x) (f y)
- cong f p i = f (p i)
-
- -- These satisfy definitional equalities, like congComp and congId, which are
- -- propositional in vanilla MLTT.
- congComp : {A : Type} {B : Type} {C : Type}
- {f : A -> B} {g : B -> C} {x : A} {y : A}
- (p : Path x y)
- -> Path (cong g (cong f p)) (cong (\x -> g (f x)) p)
- congComp p = refl
-
- congId : {A : Type} {x : A} {y : A}
- (p : Path x y)
- -> Path (cong (id {A}) p) p
- congId p = refl
-
- -- Just like rearranging parentheses gives us cong, swapping the value
- -- and interval binders gives us function extensionality.
- funext : {A : Type} {B : A -> Type} {f : (x : A) -> B x} {g : (x : A) -> B x}
- (h : (x : A) -> Path (f x) (g x))
- -> Path f g
- funext h i x = h x i
-
- -- The proposition associated with an element of the interval
- -------------------------------------------------------------
-
- -- Associated with every element i : I of the interval, we have the type
- -- IsOne i which is inhabited only when i = i1. In the model, this
- -- corresponds to the map [φ] from the interval cubical set to the
- -- subobject classifier.
-
- IsOne : I -> Pretype
- {-# PRIMITIVE IsOne #-}
-
- -- The value itIs1 witnesses the fact that i1 = i1.
- itIs1 : IsOne i1
-
- -- Furthermore, if either of i or j are one, then so is (i or j).
- isOneL : {i : I} {j : I} -> IsOne i -> IsOne (ior i j)
- isOneR : {i : I} {j : I} -> IsOne j -> IsOne (ior i j)
-
- {-# PRIMITIVE itIs1 #-}
- {-# PRIMITIVE isOneL #-}
- {-# PRIMITIVE isOneR #-}
-
- -- Partial elements
- -------------------
- --
- -- Since a function I -> A has two endpoints, and a function I -> I -> A
- -- has four endpoints + four functions I -> A as "sides" (obtained by
- -- varying argument while holding the other as a bound variable), we
- -- refer to elements of I^n -> A as "cubes".
-
- -- This justifies the existence of partial elements, which are, as the
- -- name implies, partial cubes. Namely, a Partial φ A is an element of A
- -- which depends on a proof that IsOne φ.
-
- Partial : I -> Type -> Pretype
- {-# PRIMITIVE Partial #-}
-
- -- There is also a dependent version where the type A is itself a
- -- partial element.
-
- PartialP : (phi : I) -> Partial phi Type -> Pretype
- {-# PRIMITIVE PartialP #-}
-
- -- Why is Partial φ A not just defined as φ -> A? The difference is that
- -- Partial φ A has an internal representation which definitionally relates
- -- any two partial elements which "agree everywhere", that is, have
- -- equivalent values for every possible assignment of variables which
- -- makes IsOne φ hold.
-
- -- Cubical Subtypes
- --------------------
-
- -- Given A : Type, phi : I, and a partial element u : A defined on φ,
- -- we have the type Sub A phi u, notated A[phi -> u] in the output of
- -- the type checker, whose elements are "extensions" of u.
-
- -- That is, element of A[phi -> u] is an element of A defined everywhere
- -- (a total element), which, when IsOne φ, agrees with u.
-
- Sub : (A : Type) (phi : I) -> Partial phi A -> Pretype
- {-# PRIMITIVE Sub #-}
-
- -- Every total element u : A can be made partial on φ by ignoring the
- -- constraint. Furthermore, this "totally partial" element agrees with
- -- the original total element on φ.
- inS : {A : Type} {phi : I} (u : A) -> Sub A phi (\x -> u)
- {-# PRIMITIVE inS #-}
-
- -- When IsOne φ, outS {A} {φ} {u} x reduces to u itIs1.
- -- This implements the fact that x agrees with u on φ.
- outS : {A : Type} {phi : I} {u : Partial phi A} -> Sub A phi u -> A
- {-# PRIMITIVE outS #-}
-
- -- The composition operation
- ----------------------------
-
- -- Now that we have syntax for specifying partial cubes,
- -- and specifying that an element agrees with a partial cube,
- -- we can describe the composition operation.
-
- comp : (A : I -> Type) {phi : I} (u : (i : I) -> Partial phi (A i)) -> Sub (A i0) phi (u i0) -> A i1
- {-# PRIMITIVE comp #-}
-
- -- In particular, when φ is a disjunction of the form
- -- (j = 0) || (j = 1), we can draw u as being a pair of lines forming a
- -- "tube", an open square with no floor or roof:
- --
- -- Given u = \j [ (i = i0) -> x, (i = i1) -> q j] on the extent i || ~i,
- -- we draw:
- --
- -- x q i1
- -- | |
- -- \j -> x | | \j -> q j
- -- | |
- -- x q i0
- --
- -- The composition operation says that, as long as we can provide a
- -- "floor" connecting x -- q i0, as a total element of A which, on
- -- phi, extends u i0, then we get the "roof" connecting x and q i1
- -- for free.
- --
- -- If we have a path p : x ≡ y, and q : y ≡ z, then we do get the
- -- "floor", and composition gets us the dotted line:
- --
- -- x..........z
- -- | |
- -- x | | q j
- -- | |
- -- x----------y
- -- p i
-
- trans : {A : Type} {x : A} {y : A} {z : A} -> PathP (\i -> A) x y -> PathP (\i -> A) y z -> PathP (\i -> A) x z
- trans {A} {x} p q i =
- comp (\i -> A)
- {ior i (inot i)}
- (\j [ (i = i0) -> x, (i = i1) -> q j ])
- (inS (p i))
-
- -- In particular when the formula φ = i0 we get the "opposite face" to a
- -- single point, which corresponds to transport.
-
- transp : (A : I -> Type) (x : A i0) -> A i1
- transp A x = comp A (\i [ ]) (inS x)
-
- -- Since we have the iand operator, we can also derive the *filler* of a cube,
- -- which connects the given face and the output of composition.
-
- fill : (A : I -> Type) {phi : I} (u : (i : I) -> Partial phi (A i)) -> Sub (A i0) phi (u i0) -> (i : I) -> A i
- fill A {phi} u a0 i =
- comp (\j -> A (iand i j))
- (\j [ (phi = i1) as p -> u (iand i j) p, (i = i0) -> outS a0 ])
- (inS (outS a0))
-
- -- For instance, the filler of the previous composition square
- -- tells us that trans p refl = p:
-
- transRefl : {A : Type} {x : A} {y : A} (p : Path x y) -> Path (trans p refl) p
- transRefl p j i = fill (\i -> A) {ior i (inot i)} (\k [ (i = i0) -> x, (i = i1) -> y ]) (inS (p i)) (inot j)
-
- -- Reduction of composition
- ---------------------------
- --
- -- Composition reduces on the structure of the family A : I -> Type to create
- -- the element a1 : (A i1)[phi -> u i1].
- --
- -- For instance, when filling a cube of functions, the behaviour is to
- -- first transport backwards along the domain, apply the function, then
- -- forwards along the codomain.
-
- transpFun : {A : Type} {B : Type} {C : Type} {D : Type} (p : Path A B) (q : Path C D)
- -> (f : A -> C) -> Path (transp (\i -> p i -> q i) f)
- (\x -> transp (\i -> q i) (f (transp (\i -> p (inot i)) x)))
- transpFun p q f = refl
-
- -- When considering the more general case of a composition respecing sides,
- -- the outer transport becomes a composition.
|