less prototype, less bad code implementation of CCHM type theory
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

633 lines
26 KiB

{-# LANGUAGE BlockArguments #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# OPTIONS_GHC -fno-full-laziness #-}
module Elab.WiredIn
( wiType
, wiValue
, wiredInNames
, NoSuchPrimitive(..)
, iand
, ior
, inot
, ielim
, incS
, outS
, comp
, fill
, hComp
, glueType
, glueElem
, unglue
, fun
, system
, strictK
, strictJ
, projIntoCase
)
where
import Control.Exception ( assert, Exception )
import qualified Data.Map.Strict as Map
import qualified Data.Sequence as Seq
import qualified Data.Text as T
import Data.Map.Strict (Map)
import Data.Text (Text)
import Data.Typeable
import Debug
import Elab.Eval
import GHC.Stack (HasCallStack)
import Presyntax.Presyntax (Plicity(Im, Ex))
import qualified Presyntax.Presyntax as P
import Syntax.Pretty (prettyTm, prettyVl)
import Syntax
import System.IO.Unsafe ( unsafePerformIO )
wiType :: WiredIn -> NFType
wiType WiType = VType
wiType WiPretype = VTypeω
wiType WiInterval = VTypeω
wiType WiI0 = VI
wiType WiI1 = VI
wiType WiIAnd = VI ~> VI ~> VI
wiType WiIOr = VI ~> VI ~> VI
wiType WiINot = VI ~> VI
wiType WiPathP = dprod (VI ~> VType) \a -> a @@ VI0 ~> a @@ VI1 ~> VType
wiType WiPartial = VI ~> VType ~> VTypeω
wiType WiPartialP = dprod VI \x -> VPartial x VType ~> VTypeω
wiType WiPOr = forAll VType \a -> dprod VI \phi -> dprod VI \psi -> VPartial phi a ~> VPartial psi a ~> VPartial (ior phi psi) a
wiType WiSub = dprod VType \a -> dprod VI \phi -> VPartial phi a ~> VTypeω
wiType WiInS = forAll VType \a -> forAll VI \phi -> dprod a \u -> VSub a phi (fun (const u))
wiType WiOutS = forAll VType \a -> forAll VI \phi -> forAll (VPartial phi a) \u -> VSub a phi u ~> a
wiType WiComp = dprod' "A" (VI ~> VType) \a -> forAll VI \phi -> dprod (dprod VI \i -> VPartial phi (a @@ i)) \u -> VSub (a @@ VI0) phi (u @@ VI0) ~> VSub (a @@ VI1) phi (u @@ VI1)
wiType WiGlue = dprod' "A" VType \a -> forAll' "phi" VI \phi -> dprod' "T" (VPartial phi VType) \t -> VPartialP phi (fun \o -> equiv (t @@ o) a) ~> VType
wiType WiGlueElem = forAll' "A" VType \a -> forAll' "phi" VI \phi -> forAll' "T" (VPartial phi VType) \ty -> forAll' "e" (VPartialP phi (fun \o -> equiv (ty @@ o) a)) \eqv ->
dprod' "t" (VPartialP phi ty) \t -> VSub a phi (fun \o -> vProj1 (eqv @@ o) @@ (t @@ o)) ~> VGlueTy a phi ty eqv
wiType WiUnglue = forAll' "A" VType \a -> forAll' "phi" VI \phi -> forAll' "T" (VPartial phi VType) \ty -> forAll' "e" (VPartialP phi (fun \o -> equiv (ty @@ o) a)) \e -> VGlueTy a phi ty e ~> a
wiType WiSEq = forAll' "A" VTypeω \a -> a ~> a ~> VTypeω
wiType WiSRefl = forAll' "A" VTypeω \a -> forAll' "x" a \x -> VEqStrict a x x
wiType WiSK = forAll' "A" VTypeω \a -> forAll' "x" a \x -> dprod' "P" (VEqStrict a x x ~> VTypeω) \bigp -> (bigp @@ VReflStrict a x) ~> dprod' "p" (VEqStrict a x x) \p -> bigp @@ p
wiType WiSJ = forAll' "A" VTypeω \a -> forAll' "x" a \x -> dprod' "P" (dprod' "y" a \y -> VEqStrict a x y ~> VTypeω) \bigp -> bigp @@ x @@ VReflStrict a x ~> forAll' "y" a \y -> dprod' "p" (VEqStrict a x y) \p -> bigp @@ y @@ p
wiType WiLineToEquiv = dprod' "P" (VI ~> VType) \a -> equiv (a @@ VI0) (a @@ VI1)
wiValue :: WiredIn -> Value
wiValue WiType = VType
wiValue WiPretype = VTypeω
wiValue WiInterval = VI
wiValue WiI0 = VI0
wiValue WiI1 = VI1
wiValue WiIAnd = functions [(Ex, "i"), (Ex, "j")] \[i, j] -> iand i j
wiValue WiIOr = functions [(Ex, "i"), (Ex, "j")] \[i, j] -> ior i j
wiValue WiINot = fun' "x" inot
wiValue WiPathP = functions [(Ex, "A"), (Ex, "x"), (Ex, "y")] \[a, x, y] -> VPath a x y
wiValue WiPartial = functions [(Ex, "phi"), (Ex, "A")] \[phi, a] -> VPartial phi a
wiValue WiPartialP = functions [(Ex, "phi"), (Ex, "A")] \[phi, a] -> VPartialP phi a
wiValue WiPOr = functions [(Im, "A"), (Ex, "phi"), (Ex, "psi"), (Ex, "a"), (Ex, "b")] \[_, phi, psi, a, b] -> mkVSystem (Map.fromList [(phi, a), (psi, b)])
wiValue WiSub = functions [(Ex, "A"), (Ex, "phi"), (Ex, "u")] \[a, phi, u] -> VSub a phi u
wiValue WiInS = functions [(Im, "A"), (Im, "phi"), (Ex, "u")] \[a, phi, u] -> incS a phi u
wiValue WiOutS = functions [(Im, "A"), (Im, "phi"), (Im, "u"), (Ex, "u0")] \[a, phi, u, x] -> outS a phi u x
wiValue WiComp = fun' "A" \a -> forallI \phi -> fun' "u" \u -> fun' "u0" \x -> incS (a @@ VI1) phi (comp a phi u x)
wiValue WiGlue = fun \a -> forallI \phi -> fun \t -> fun \e -> glueType a phi t e
wiValue WiGlueElem = forallI \a -> forallI \phi -> forallI \ty -> forallI \eqv -> fun \x -> fun \y -> glueElem a phi ty eqv x y
wiValue WiUnglue = forallI \a -> forallI \phi -> forallI \ty -> forallI \eqv -> fun \x -> unglue a phi ty eqv x
wiValue WiSEq = forallI \a -> fun \x -> fun \y -> VEqStrict a x y
wiValue WiSRefl = forallI \a -> forallI \x -> VReflStrict a x
wiValue WiSK = forallI \a -> forallI \x -> fun \bigp -> fun \pr -> fun \p -> strictK a x bigp pr p
wiValue WiSJ = forallI \a -> forallI \x -> fun \bigp -> fun \pr -> forallI \y -> fun \p -> strictJ a x bigp pr y p
wiValue WiLineToEquiv = fun \l ->
GluedVl
(HVar (Defined "lineToEquiv" (-1)))
(Seq.fromList [(PApp P.Ex l)])
(makeEquiv' ((l @@) . inot))
(~>) :: Value -> Value -> Value
a ~> b = VPi P.Ex a (Closure (Bound "_" 0) (const b))
infixr 7 ~>
fun, line :: (Value -> Value) -> Value
fun k = VLam P.Ex $ Closure (Bound "x" 0) (k . force)
line k = VLam P.Ex $ Closure (Bound "i" 0) (k . force)
fun' :: String -> (Value -> Value) -> Value
fun' x k = VLam P.Ex $ Closure (Bound (T.pack x) 0) (k . force)
functions :: [(P.Plicity, String)] -> ([Value] -> Value) -> Value
functions args cont = go args [] where
go [] acc = cont (reverse acc)
go ((p, x):xs) acc = VLam p $ Closure (Bound (T.pack x) 0) \arg -> go xs (arg:acc)
forallI :: (Value -> Value) -> Value
forallI k = VLam P.Im $ Closure (Bound "x" 0) (k . force)
dprod' :: String -> Value -> (Value -> Value) -> Value
dprod' t a b = VPi P.Ex a (Closure (Bound (T.pack t) 0) b)
dprod :: Value -> (Value -> Value) -> Value
dprod = dprod' "x"
exists' :: String -> Value -> (Value -> Value) -> Value
exists' s a b = VSigma a (Closure (Bound (T.pack s) 0) b)
exists :: Value -> (Value -> Value) -> Value
exists = exists' "x"
forAll' :: String -> Value -> (Value -> Value) -> Value
forAll' n a b = VPi P.Im a (Closure (Bound (T.pack n) 0) b)
forAll :: Value -> (Value -> Value) -> Value
forAll = forAll' "x"
wiredInNames :: Map Text WiredIn
wiredInNames = Map.fromList
[ ("Pretype", WiPretype)
, ("Type", WiType)
, ("Interval", WiInterval)
, ("i0", WiI0)
, ("i1", WiI1)
, ("iand", WiIAnd)
, ("ior", WiIOr)
, ("inot", WiINot)
, ("PathP", WiPathP)
, ("Partial", WiPartial)
, ("PartialP", WiPartialP)
, ("partialExt", WiPOr)
, ("Sub", WiSub)
, ("inS", WiInS)
, ("outS", WiOutS)
, ("comp", WiComp)
, ("Glue", WiGlue)
, ("glue", WiGlueElem)
, ("unglue", WiUnglue)
, ("Eq_s", WiSEq)
, ("refl_s", WiSRefl)
, ("K_s", WiSK)
, ("J_s", WiSJ)
, ("lineToEquiv", WiLineToEquiv)
]
newtype NoSuchPrimitive = NoSuchPrimitive { getUnknownPrim :: Text }
deriving (Show, Typeable)
deriving anyclass (Exception)
iand, ior :: Value -> Value -> Value
iand x = case force x of
VI1 -> id
VI0 -> const VI0
VIAnd x y -> \z -> case force z of
VI0 -> VI0
VI1 -> VI1
z -> iand x (iand y z)
x -> \y -> case force y of
VI0 -> VI0
VI1 -> x
y -> VIAnd x y
ior x = case force x of
VI0 -> id
VI1 -> const VI1
VIOr x y -> \z -> case force z of
VI1 -> VI1
VI0 -> VIOr x y
_ -> ior x (ior y z)
x -> \y -> case force y of
VI1 -> VI1
VI0 -> x
y -> VIOr x y
inot :: Value -> Value
inot x = case force x of
VI0 -> VI1
VI1 -> VI0
VIOr x y -> VIAnd (inot x) (inot y)
VIAnd x y -> VIOr (inot x) (inot y)
VINot x -> x
x -> VINot x
ielim :: Value -> Value -> Value -> Value -> NFEndp -> Value
ielim line left right (GluedVl h sp vl) i =
GluedVl h (sp Seq.:|> PIElim line left right i) (ielim line left right vl i)
ielim line left right fn i =
case force fn of
VLine _ _ _ fun -> fun @@ i
VLam _ (Closure _ k) -> k i
x -> case force i of
VI1 -> right
VI0 -> left
_ -> case x of
VNe n sp -> VNe n (sp Seq.:|> PIElim line left right i)
VSystem map -> VSystem (fmap (flip (ielim line left right) i) map)
VInc (VPath _ _ _) _ u -> ielim line left right u i
VCase env r x xs -> VCase env r x (fmap (projIntoCase (flip (IElim (quote line) (quote left) (quote right)) (quote i))) xs)
_ -> error $ "can't ielim " ++ show (prettyTm (quote fn))
incS :: DebugCallStack => NFSort -> NFEndp -> Value -> Value
incS _ _ (force -> VNe h (sp Seq.:|> POuc _ _ _))
= VNe h sp
incS a phi u = VInc a phi u
outS :: DebugCallStack => NFSort -> NFEndp -> Value -> Value -> Value
outS _ (force -> VI1) u _ = u @@ VReflStrict VI VI1
outS _ _phi _ (VInc _ _ x) = x
outS _ VI0 _ x = x
outS a phi u (GluedVl x sp vl) = GluedVl x (sp Seq.:|> POuc a phi u) (outS a phi u vl)
outS a phi u (VNe x sp) = VNe x (sp Seq.:|> POuc a phi u)
outS a phi u (VSystem fs) = mkVSystem (fmap (outS a phi u) fs)
outS _ _ _ v = error $ "can't outS " ++ show (prettyTm (quote v))
comp :: DebugCallStack => NFLine -> NFEndp -> Value -> Value -> Value
comp _a (force -> VI1) u _a0 = u @@ VI1 @@ VReflStrict VI VI1
comp a psi@phi u incA0@(outS (a @@ VI0) phi (u @@ VI0) -> a0) =
case force (a @@ VVar name) of
VPi{} ->
let
plic i = let VPi p _ _ = force (a @@ i) in p
dom i = let VPi _ d _ = force (a @@ i) in d
rng i = let VPi _ _ (Closure _ r) = force (a @@ i) in r
y' i y = fill (fun (dom . inot)) VI0 (fun \_ -> fun \_ -> VSystem mempty) (incS (dom VI0) phi y) i
ybar i y = y' (inot i) y
in VLam (plic VI1) . Closure (Bound "x" 0) $ \arg ->
comp (line \i -> rng i (ybar i arg))
phi
(system \i isone -> vApp (plic i) (u @@ i @@ isone) (ybar i arg))
(incS (rng VI0 (ybar VI0 arg)) phi (vApp (plic VI0) a0 (ybar VI0 arg)))
VSigma{} ->
let
dom i = let VSigma d _ = force (a @@ i) in d
rng i = let VSigma _ (Closure _ r) = force (a @@ i) in r
w i = fill (fun dom) phi (system \i isone -> vProj1 (u @@ i @@ isone)) (incS (dom VI0) phi (vProj1 a0)) i
c2 = comp (fun \x -> rng x (w x)) phi (system \i isone -> vProj2 (u @@ i @@ isone)) (incS (rng VI0 (w VI0)) phi (vProj2 a0))
in
VPair (w VI1) c2
VPath{} ->
let
a' i = let VPath thea _ _ = force (a @@ i) in thea
u' i = let VPath _ theu _ = force (a @@ i) in theu
v' i = let VPath _ _ thev = force (a @@ i) in thev
in
VLine (a' VI1 @@ VI1) (u' VI1) (v' VI1) $ fun \j ->
comp (fun \x -> a' x @@ x)
(phi `ior` j `ior` inot j)
(system \i isone -> mkVSystem (Map.fromList [ (phi, ielim (a' VI0) (u' VI0) (v' VI0) (u @@ i @@ isone) j)
, (j, v' i)
, (inot j, u' i)]))
(incS (a' VI0 @@ VI0 @@ j) phi (ielim (a' VI0 @@ VI0) (u' VI0) (v' VI0) a0 j))
VGlueTy _ thePhi theTypes theEquivs ->
let
b = u
b0 = a0
fam = a
in
let
base i = let VGlueTy b _ _ _ = forceAndGlue (fam @@ i) in b
phi i = substitute (Map.singleton name i) thePhi
types i = substitute (Map.singleton name i) theTypes @@ VReflStrict VI VI1
equivs i = substitute (Map.singleton name i) theEquivs
a i u = unglue (base i) (phi i) (types i) (equivs i) (b @@ i @@ u)
a0 = unglue (base VI0) (phi VI0) (types VI0) (equivs VI0) b0
del = faceForall phi
a1' = comp (line base) psi (system a) (incS (base VI0) psi a0)
t1' = comp (line (const (types VI0))) psi (line (b @@)) (incS (base VI0) psi b0)
(omega_st, omega_t, omega_rep) = pres types base equivs psi (b @@) b0
omega = outS omega_t psi omega_rep omega_st
(t1alpha_st, t1a_t, t1a_rep) = opEquiv (base VI1) (types VI1) (equivs VI1 @@ VReflStrict VI VI1) (del `ior` psi) (fun ts) (fun ps) a1'
t1alpha = outS t1a_t (del `ior` psi) t1a_rep t1alpha_st
(t1, alpha) = (vProj1 t1alpha, vProj2 t1alpha)
ts isone = mkVSystem . Map.fromList $ [(del, t1'), (psi, (b @@ VI1 @@ isone))]
ps _isone = mkVSystem . Map.fromList $ [(del, omega), (psi, VLine (line (const (base VI1))) a1' a1' (fun (const a1')))]
a1 = comp
(fun (const (base VI1)))
(del `ior` psi)
(system \j _u -> mkVSystem (Map.fromList [ (del, ielim (base VI1) a1' (vProj1 (equivs VI1 @@ VReflStrict VI VI1)) alpha j)
, (psi, a psi _u)
]))
(incS (base VI1) (phi VI1 `ior` psi) a1')
b1 = glueElem (base VI1) (phi VI1) (types VI1) (equivs VI1) (fun (const t1)) (incS (base VI1) (ior (del `ior` psi) (inot del `iand` inot psi)) a1)
in b1
VType -> VGlueTy a0 phi (fun' "is1" \is1 -> u @@ VI1 @@ is1)
(fun' "is1" \_ -> mapVSystem (makeEquiv equivVar) (u @@ VVar equivVar @@ VReflStrict VI VI1))
VNe (HData False _) Seq.Empty -> a0
VNe (HData False _) args ->
case force a0 of
VNe (HCon con_type con_name) con_args ->
VNe (HCon con_type con_name) $ compConArgs makeSetFiller (length args) (a @@) con_type con_args phi u
_ -> VComp a phi u (incS (a @@ VI0) phi a0)
VNe (HData True name) args -> compHIT name (length args) (a @@) phi u incA0
_ -> VComp a phi u (incS (a @@ VI0) phi a0)
where
{-# NOINLINE name #-}
name :: Name
name = unsafePerformIO newName
{-# NOINLINE equivVar #-}
equivVar :: Name
equivVar = unsafePerformIO newName
mapVSystem :: (Value -> Value) -> Value -> Value
mapVSystem f (VSystem fs) = VSystem (fmap f fs)
mapVSystem f x = f x
forceAndGlue :: Value -> Value
forceAndGlue v =
case force v of
v@VGlueTy{} -> v
y -> VGlueTy y VI1 (fun (const y)) (fun (const (idEquiv y)))
compHIT :: HasCallStack => Name -> Int -> (NFEndp -> NFSort) -> NFEndp -> Value -> Value -> Value
compHIT name n a phi u a0 =
case force phi of
VI1 -> u @@ VI1 @@ VReflStrict VI VI1
VI0 | n == 0 -> outS (a VI0) phi u a0
| regular -> a0
| otherwise -> transHit name a VI0 (outS (a VI0) phi u a0)
x -> go n a x u a0
where
go 0 a phi u a0 = VHComp (a VI0) phi u a0
go _ a phi u a0 = VHComp (a VI1) phi (system \i n -> transSqueeze name a VI0 (\i -> u @@ i @@ n) i) (transHit name a VI0 (outS (a VI0) phi (u @@ VI1 @@ VReflStrict VI VI1) a0))
regular = a VI0 == a VI1
compConArgs :: (Name -> Int -> Value -> t1 -> t2 -> Value -> Value)
-> Int
-> (Value -> Value)
-> Value
-> Seq.Seq Projection
-> t1 -> t2
-> Seq.Seq Projection
compConArgs makeFiller total_args fam = go total_args where
go _ _ Seq.Empty _ _ = Seq.Empty
go nargs (VPi p dom (Closure _ rng)) (PApp p' y Seq.:<| xs) phi u
| nargs > 0 = assert (p == p') $
PApp p' (nthArg (total_args - nargs) (fam VI1)) Seq.:<| go (nargs - 1) (rng (smuggle (fun (\i -> nthArg (total_args - nargs) (fam i))))) xs phi u
| otherwise = assert (p == p') $
let fill = makeFiller typeArgument nargs dom phi u y
in PApp p' (fill @@ VI1) Seq.:<| go (nargs - 1) (rng fill) xs phi u
go _ _ _ _ _ = error $ "invalid constructor"
smuggle x = VNe (HData False typeArgument) (Seq.singleton (PApp P.Ex x))
typeArgument = unsafePerformIO newName
{-# NOINLINE typeArgument #-}
makeSetFiller :: Name -> Int -> Value -> NFEndp -> Value -> Value -> Value
makeSetFiller typeArgument nth (VNe (HData _ n') args) phi u a0
| n' == typeArgument =
fun $ fill (makeDomain args) phi (system \i is1 -> nthArg nth (u @@ i @@ is1) ) a0
where
makeDomain (PApp _ x Seq.:<| xs) = fun \i -> foldl (\t (~(PApp _ x)) -> t @@ (x @@ i)) (x @@ i) xs
makeDomain _ = error "somebody smuggled something that smells"
makeSetFiller _ _ _ _ _ a0 = fun (const a0)
nthArg :: Int -> Value -> Value
nthArg i (force -> VNe hd s) =
case s Seq.!? i of
Just (PApp _ t) -> t
_ -> error $ "invalid " ++ show i ++ "th argument to data type " ++ show hd
nthArg i (force -> VSystem vs) = VSystem (fmap (nthArg i) vs)
nthArg i xs = error $ "can't get " ++ show i ++ "th argument of " ++ show (prettyTm (quote xs))
system :: (Value -> Value -> Value) -> Value
system k = VLam P.Ex $ Closure (Bound "i" 0) \i -> VLam P.Ex $ Closure (Bound "[i]" 0) \isone -> k i isone
fill :: DebugCallStack => NFLine -> NFEndp -> Value -> Value -> NFEndp -> Value
fill a phi u a0 j =
comp (line \i -> a @@ (i `iand` j))
(phi `ior` inot j)
(system \i isone -> mkVSystem (Map.fromList [ (phi, u @@ (i `iand` j) @@ isone)
, (inot j, outS a phi (u @@ VI0) a0)]))
a0
hComp :: DebugCallStack => NFSort -> NFEndp -> Value -> Value -> Value
hComp _ (force -> VI1) u _ = u @@ VI1 @@ VReflStrict VI VI1
hComp a phi u a0 = VHComp a phi u a0
glueType :: DebugCallStack => NFSort -> NFEndp -> NFPartial -> NFPartial -> Value
glueType a phi tys eqvs = VGlueTy a phi tys eqvs
glueElem :: DebugCallStack => NFSort -> NFEndp -> NFPartial -> NFPartial -> NFPartial -> Value -> Value
glueElem _a (force -> VI1) _tys _eqvs t _vl = t @@ VReflStrict VI VI1
glueElem _a _phi _tys _eqvs _t (force -> VInc _ _ (force -> VUnglue _ _ _ _ vl)) = vl
glueElem a phi tys eqvs t vl = VGlue a phi tys eqvs t vl
unglue :: DebugCallStack => NFSort -> NFEndp -> NFPartial -> NFPartial -> Value -> Value
unglue _a (force -> VI1) _tys eqvs x = vProj1 (eqvs @@ VReflStrict VI VI1) @@ x
unglue _a _phi _tys _eqvs (force -> VGlue _ _ _ _ t vl) = outS _a _phi (t @@ VReflStrict VI VI1) vl
unglue a phi tys eqvs (force -> VSystem fs) = VSystem (fmap (unglue a phi tys eqvs) fs)
unglue a phi tys eqvs vl = VUnglue a phi tys eqvs vl
faceForall :: (NFEndp -> NFEndp) -> Value
faceForall phi = T.length (getNameText name) `seq` go (phi (VVar name)) where
{-# NOINLINE name #-}
name = unsafePerformIO newName
go x@(VVar n)
| n == name = VI0
| otherwise = x
go x@(VINot (VVar n))
| n == name = VI0
| otherwise = x
go (VIAnd x y) = iand (go x) (go y)
go (VIOr x y) = ior (go x) (go y)
go (VINot x) = inot (go x)
go vl = vl
isContr :: Value -> Value
isContr a = exists' "x" a \x -> dprod' "y" a \y -> VPath (line (const a)) x y
fiber :: NFSort -> NFSort -> Value -> Value -> Value
fiber a b f y = exists' "x" a \x -> VPath (line (const b)) y (f @@ x)
isEquiv :: NFSort -> NFSort -> Value -> Value
isEquiv a b f = dprod' "y" b \y -> isContr (fiber a b f y)
equiv :: NFSort -> NFSort -> Value
equiv a b = GluedVl (HCon VType (Defined (T.pack "Equiv") (-1))) sp $ exists' "f" (a ~> b) \f -> isEquiv a b f where
sp = Seq.fromList [ PApp P.Ex a, PApp P.Ex b ]
pres :: (NFEndp -> NFSort) -> (NFEndp -> NFSort) -> (NFEndp -> Value) -> NFEndp -> (NFEndp -> Value) -> Value -> (Value, NFSort, Value)
pres tyT tyA f phi t t0 = (incS pathT phi (VLine (tyA VI1) c1 c2 (line path)), pathT, fun $ \u -> VLine (fun (const (tyA VI1))) c1 c2 (fun (const (f VI1 @@ (t VI1 @@ u))))) where
pathT = VPath (fun (const (tyA VI1))) c1 c2
c1 = comp (line tyA) phi (system \i u -> f i @@ (t i @@ u)) (incS (tyA VI0) phi (f VI0 @@ t0))
c2 = f VI1 @@ comp (line tyT) phi (system \i u -> t i @@ u) t0
a0 = f VI0 @@ t0
v = fill (fun tyT) phi (system \i u -> t i @@ u) t0
path j = comp (fun tyA) (phi `ior` j) (system \i _ -> f i @@ (v i)) (incS (tyA VI0) phi a0)
opEquiv :: HasCallStack => Value -> Value -> Value -> NFEndp -> Value -> Value -> Value -> (Value, NFSort, Value)
opEquiv aT tT f phi t p a = (incS ty phi v, ty, fun \u -> VPair (t @@ u) (p @@ u)) where
fn = vProj1 f
ty = exists' "f" tT \x -> VPath (line (const aT)) a (fn @@ x)
v = contr ty (vProj2 f @@ a) phi (\u -> VPair (t @@ u) (p @@ u))
contr :: HasCallStack => Value -> Value -> NFEndp -> (Value -> Value) -> Value
contr a aC phi u =
comp (line (const a))
(ior phi (inot phi))
(system \i is1 -> mkVSystem $ Map.fromList [ (phi, ielim (line (const a)) (vProj1 aC) (u is1) (vProj2 aC @@ u is1) i)
, (inot phi, vProj1 aC)
])
(incS a phi (vProj1 aC))
transp :: (NFEndp -> Value) -> Value -> Value
transp line a0 = comp (fun line) VI0 (system \_ _ -> VSystem mempty) (incS (line VI0) VI0 a0)
gtrans :: (NFEndp -> Value) -> NFEndp -> Value -> Value
gtrans line phi a0 = comp (fun line) phi (system \_ _ -> mkVSystem (Map.singleton phi a0)) (incS (line VI0) VI0 a0)
transHit :: Name -> (NFEndp -> Value) -> NFEndp -> Value -> Value
transHit name line phi x = transHit name line phi (force x) where
transHit name line phi (VHComp _ psi u u0) = VHComp (line VI1) psi (system \i j -> transHit name line phi (u @@ i @@ j)) (transHit name line phi (outS (line VI0) phi u u0))
transHit name line phi (VNe (HCon con_type con_name) spine) | ourType = x' where
x' = VNe (HCon con_type con_name) $ compConArgs (makeTransFiller name) nargs line con_type spine phi ()
(_, force -> VNe hd (length -> nargs)) = unPi con_type
ourType = case hd of
HData True n' -> n' == name
_ -> False
transHit name line phi (VNe (HPCon sys con_type con_name) spine) | ourType = x' where
x' = VNe (HPCon (mapVSystem rec sys) con_type con_name) $ compConArgs (makeTransFiller name) nargs line con_type spine phi ()
rec = transHit name line phi
(_, force -> VNe hd (length -> nargs)) = unPi con_type
ourType = case hd of
HData True n' -> n' == name
_ -> False
transHit name line phi (VSystem xs) = mkVSystem (fmap (transHit name line phi) xs)
transHit _ line phi a0 = gtrans line phi a0
transFill :: Name -> (NFEndp -> Value) -> NFEndp -> Value -> NFEndp -> Value
transFill name a phi a0 i = transHit name (\j -> a (iand i j)) (phi `ior` inot i) a0 where
transSqueeze :: Name -> (NFEndp -> Value) -> NFEndp -> (NFEndp -> Value) -> NFEndp -> Value
transSqueeze name a phi x i = transHit name (\j -> a (ior i j)) (phi `ior` i) (x i)
makeTransFiller :: Name -> Name -> p -> Value -> NFEndp -> () -> Value -> Value
makeTransFiller thedata typeArgument _ (VNe (HData _ n') args) phi () a0
| n' == typeArgument = fun (transFill thedata (makeDomain args) phi a0)
where
makeDomain (PApp _ x Seq.:<| xs) = \i -> foldl (\t (~(PApp _ x)) -> t @@ (x @@ i)) (x @@ i) xs
makeDomain _ = error "somebody smuggled something that smells"
makeTransFiller _ _ _ _ _ _ a0 = fun (const a0)
makeEquiv :: Name -> Value -> Value
makeEquiv var vne = makeEquiv' \x -> substitute (Map.singleton var x) vne
makeEquiv' :: (NFEndp -> Value) -> Value
makeEquiv' line' = VPair f $ fun \y -> VPair (fib y) (fun \u -> p (vProj1 u) (vProj2 u) y)
where
line = fun \i -> line' (inot i)
a = line @@ VI0
b = line @@ VI1
f = fun \x -> transp (line @@) x
g = fun \x -> transp ((line @@) . inot) x
u i = fun \x -> fill line VI0 (system \_ _ -> mkVSystem mempty) (incS a VI0 x) i
v i = fun \x -> fill (fun ((line @@) . inot)) VI0 (system \_ _ -> mkVSystem mempty) (incS a VI1 x) (inot i)
fib y = VPair (g @@ y) (VLine b y (f @@ (g @@ y)) (fun (theta0 y VI1)))
theta0 y i j = fill line (ior j (inot j)) (system \i _ -> mkVSystem (Map.fromList [(j, v i @@ y), (inot j, u i @@ (g @@ y))])) (incS a (ior j (inot j)) (g @@ y)) i
theta1 x beta y i j =
fill (fun ((line @@) . inot))
(ior j (inot j))
(system \i _ -> mkVSystem (Map.fromList [ (inot j, v (inot i) @@ y)
, (j, u (inot i) @@ x)]))
(incS b (ior j (inot j)) (ielim b y (f @@ x) beta y))
(inot i)
omega x beta y = theta1 x beta y VI0
delta x beta y j k = comp line (ior k (ior (inot k) (ior j (inot j))))
(system \i _ -> mkVSystem (Map.fromList [ (inot k, theta0 y i j)
, (k, theta1 x beta y i j)
, (inot j, v i @@ y)
, (j, u i @@ omega x beta y k)]))
(incS a (ior k (ior (inot k) (ior j (inot j)))) (omega x beta y (iand j k)))
p x beta y = VLine (exists a \x -> VPath b y (f @@ x)) (fib y) (VPair x beta) $ fun \k ->
VPair (omega x beta y k) (VLine (VPath b y (f @@ x)) (vProj2 (fib y)) beta $ fun \j -> delta x beta y j k)
idEquiv :: NFSort -> Value
idEquiv a = VPair idfun idisequiv where
idfun = fun id
u_ty = exists' "y" a \x -> VPath (fun (const a)) x x
idisequiv = fun \y -> VPair (id_fiber y) $ fun \u ->
VLine u_ty (id_fiber y) u $ fun \i -> VPair (ielim (fun (const a)) y y (vProj2 u) i) $
VLine (fun (const a)) y (vProj1 u) $ fun \j ->
ielim (fun (const a)) y y (vProj2 u) (iand i j)
id_fiber y = VPair y (VLine a y y (fun (const y)))
strictK :: DebugCallStack => Value -> Value -> Value -> Value -> Value -> Value
strictK _ _ _ pr (VReflStrict _ _) = pr
strictK a x bigp pr (VNe h sp) = VNe h (sp Seq.:|> PK a x bigp pr)
strictK a x bigp pr (VCase env rng sc cases) = VCase env rng sc (map (projIntoCase func) cases) where
func = AxK (quote a) (quote x) (quote bigp) (quote pr)
strictK a x bigp pr (GluedVl h sp vl) = GluedVl h (sp Seq.:|> PK a x bigp pr) (strictK a x bigp pr vl)
strictK _ _ _ _r eq = error $ "can't K " ++ show (prettyVl eq)
strictJ :: DebugCallStack => Value -> Value -> Value -> Value -> Value -> Value -> Value
strictJ _a _x _bigp pr _ (VReflStrict _ _) = pr
strictJ a x bigp pr y (VNe h sp) = VNe h (sp Seq.:|> PJ a x bigp pr y)
strictJ a x bigp pr y (VCase env rng sc cases) = VCase env rng sc (map (projIntoCase func) cases) where
func = AxJ (quote a) (quote x) (quote bigp) (quote pr) (quote y)
strictJ a x bigp pr y (GluedVl h sp vl) = GluedVl h (sp Seq.:|> PJ a x bigp pr y) (strictJ a x bigp pr y vl)
strictJ _ _ _ _r _ eq = error $ "can't J " ++ show eq
projIntoCase :: (Term -> Term) -> (Term, Int, Term) -> (Term, Int, Term)
projIntoCase fun (pat, nLams, term) = (pat, nLams, go nLams term) where
go 0 x = fun x
go n (Lam p x r) = Lam p x (go (n - 1) r)
go n (PathIntro l a b r) = PathIntro l a b (go (n - 1) r)
go _ x = error $ show $ prettyTm x