less prototype, less bad code implementation of CCHM type theory
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

740 lines
29 KiB

{-# LANGUAGE BlockArguments #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE TupleSections #-}
module Elab.Eval where
import Control.Monad.Reader
import Control.Exception
import qualified Data.Map.Strict as Map
import qualified Data.Sequence as Seq
import qualified Data.Set as Set
import qualified Data.Text as T
import Data.Map.Strict (Map)
import Data.Sequence (Seq)
import Data.List (sortOn)
import Data.Traversable
import Data.Set (Set)
import Data.Typeable
import Data.Foldable
import Data.IORef
import Data.Maybe
import {-# SOURCE #-} Elab.Eval.Formula
import Elab.Monad
import GHC.Stack
import Presyntax.Presyntax (Plicity(..))
import Syntax.Pretty
import Syntax
import System.IO.Unsafe ( unsafePerformIO )
import {-# SOURCE #-} Elab.WiredIn
import Debug (traceM, traceDocM)
import Prettyprinter (pretty, (<+>))
eval :: HasCallStack => Term -> ElabM Value
eval t = asks (flip eval' t)
zonkIO :: Value -> IO Value
zonkIO (VNe hd sp) = do
sp' <- traverse zonkSp sp
case hd of
HMeta (mvCell -> cell) -> do
solved <- liftIO $ readIORef cell
case solved of
Just vl -> zonkIO $ foldl applProj vl sp'
Nothing -> pure $ VNe hd sp'
hd -> pure $ VNe hd sp'
zonkIO (GluedVl h sp vl) = GluedVl h <$> traverse zonkSp sp <*> zonkIO vl
zonkIO (VLam p (Closure s k)) = pure $ VLam p (Closure s (zonk . k))
zonkIO (VPi p d (Closure s k)) = VPi p <$> zonkIO d <*> pure (Closure s (zonk . k))
zonkIO (VSigma d (Closure s k)) = VSigma <$> zonkIO d <*> pure (Closure s (zonk . k))
zonkIO (VPair a b) = VPair <$> zonkIO a <*> zonkIO b
zonkIO (VPath line x y) = VPath <$> zonkIO line <*> zonkIO x <*> zonkIO y
zonkIO (VLine line x y f) = VLine <$> zonkIO line <*> zonkIO x <*> zonkIO y <*> zonkIO f
zonkIO VType = pure VType
zonkIO VTypeω = pure VTypeω
zonkIO VI = pure VI
zonkIO VI0 = pure VI0
zonkIO VI1 = pure VI1
zonkIO (VIAnd x y) = iand <$> zonkIO x <*> zonkIO y
zonkIO (VIOr x y) = ior <$> zonkIO x <*> zonkIO y
zonkIO (VINot x) = inot <$> zonkIO x
zonkIO (VPartial x y) = VPartial <$> zonkIO x <*> zonkIO y
zonkIO (VPartialP x y) = VPartialP <$> zonkIO x <*> zonkIO y
zonkIO (VSystem fs) = do
t <- for (Map.toList fs) $ \(a, b) -> (,) <$> zonkIO a <*> zonkIO b
pure (mkVSystem (Map.fromList t))
zonkIO (VSub a b c) = VSub <$> zonkIO a <*> zonkIO b <*> zonkIO c
zonkIO (VInc a b c) = incS <$> zonkIO a <*> zonkIO b <*> zonkIO c
zonkIO (VComp a b c d) = pure $ VComp a b c d
zonkIO (VHComp a b c d) = pure $ VHComp a b c d
zonkIO (VGlueTy a phi ty e) = glueType <$> zonkIO a <*> zonkIO phi <*> zonkIO ty <*> zonkIO e
zonkIO (VGlue a phi ty e t x) = glueElem <$> zonkIO a <*> zonkIO phi <*> zonkIO ty <*> zonkIO e <*> zonkIO t <*> zonkIO x
zonkIO (VUnglue a phi ty e x) = unglue <$> zonkIO a <*> zonkIO phi <*> zonkIO ty <*> zonkIO e <*> zonkIO x
zonkIO (VCase env t x xs) = pure $ VCase env t x xs
zonkIO (VEqStrict a x y) = VEqStrict <$> zonkIO a <*> zonkIO x <*> zonkIO y
zonkIO (VReflStrict a x) = VReflStrict <$> zonkIO a <*> zonkIO x
zonkSp :: Projection -> IO Projection
zonkSp (PApp p x) = PApp p <$> zonkIO x
zonkSp (PIElim l x y i) = PIElim <$> zonkIO l <*> zonkIO x <*> zonkIO y <*> zonkIO i
zonkSp (POuc a phi u) = POuc <$> zonkIO a <*> zonkIO phi <*> zonkIO u
zonkSp (PK a x p pr) = PK <$> zonkIO a <*> zonkIO x <*> zonkIO p <*> zonkIO pr
zonkSp (PJ a x p pr y) = PJ <$> zonkIO a <*> zonkIO x <*> zonkIO p <*> zonkIO pr <*> zonkIO y
zonkSp PProj1 = pure PProj1
zonkSp PProj2 = pure PProj2
zonk :: Value -> Value
zonk = unsafePerformIO . zonkIO
eval' :: HasCallStack => ElabEnv -> Term -> Value
eval' env (Ref x) =
case Map.lookup x (getEnv env) of
Just (_, vl) -> vl
_ -> VNe (HVar x) mempty
eval' env (Con x) =
case Map.lookup x (getEnv env) of
Just (ty, _) -> VNe (HCon ty x) mempty
Nothing -> error $ "constructor " ++ show x ++ " has no type in scope"
eval' env (PCon sys x) =
case Map.lookup x (getEnv env) of
Just (ty, _) -> VNe (HPCon (eval' env sys) ty x) mempty
Nothing -> error $ "constructor " ++ show x ++ " has no type in scope"
eval' _ (Data n x) = VNe (HData n x) mempty
eval' env (App p f x) = vApp p (eval' env f) (eval' env x)
eval' env (Lam p s t) =
VLam p $ Closure s $ \a ->
eval' env { getEnv = Map.insert s (idkT, a) (getEnv env) } t
eval' env (Pi p s d t) =
VPi p (eval' env d) $ Closure s $ \a ->
eval' env { getEnv = (Map.insert s (idkT, a) (getEnv env))} t
eval' _ (Meta m) = VNe (HMeta m) mempty
eval' env (Sigma s d t) =
VSigma (eval' env d) $ Closure s $ \a ->
eval' env { getEnv = Map.insert s (idkT, a) (getEnv env) } t
eval' e (Pair a b) = VPair (eval' e a) (eval' e b)
eval' e (Proj1 a) = vProj1 (eval' e a)
eval' e (Proj2 a) = vProj2 (eval' e a)
eval' _ Type = VType
eval' _ Typeω = VTypeω
eval' _ I = VI
eval' _ I0 = VI0
eval' _ I1 = VI1
eval' e (IAnd x y) = iand (eval' e x) (eval' e y)
eval' e (IOr x y) = ior (eval' e x) (eval' e y)
eval' e (INot x) = inot (eval' e x)
eval' e (PathP l a b) = VPath (eval' e l) (eval' e a) (eval' e b)
eval' e (IElim l x y f i) = ielim (eval' e l) (eval' e x) (eval' e y) (eval' e f) (eval' e i)
eval' e (PathIntro p x y f) = VLine (eval' e p) (eval' e x) (eval' e y) (eval' e f)
eval' e (Partial x y) = VPartial (eval' e x) (eval' e y)
eval' e (PartialP x y) = VPartialP (eval' e x) (eval' e y)
eval' e (System fs) = mkVSystem (Map.fromList $ map (\(x, y) -> (eval' e x, eval' e y)) $ Map.toList $ fs)
eval' e (Sub a phi u) = VSub (eval' e a) (eval' e phi) (eval' e u)
eval' e (Inc a phi u) = incS (eval' e a) (eval' e phi) (eval' e u)
eval' e (Ouc a phi u x) = outS (eval' e a) (eval' e phi) (eval' e u) (eval' e x)
eval' e (Comp a phi u a0) = comp (eval' e a) (eval' e phi) (eval' e u) (eval' e a0)
eval' e (HComp a phi u a0) = hComp (eval' e a) (eval' e phi) (eval' e u) (eval' e a0)
eval' e (GlueTy a phi tys f) = glueType (eval' e a) (eval' e phi) (eval' e tys) (eval' e f)
eval' e (Glue a phi tys eqvs t x) = glueElem (eval' e a) (eval' e phi) (eval' e tys) (eval' e eqvs) (eval' e t) (eval' e x)
eval' e (Unglue a phi tys f x) = unglue (eval' e a) (eval' e phi) (eval' e tys) (eval' e f) (eval' e x)
eval' e (Let ns x) =
let env' = foldl (\newe (n, ty, x) ->
let nft = eval' newe ty
in newe { getEnv = Map.insert n (nft, evalFix' newe n nft x) (getEnv newe) })
e
ns
in eval' env' x
eval' e (Case range sc xs) = evalCase e (eval' e range @@) (force (eval' e sc)) xs
eval' e (EqS a x y) = VEqStrict (eval' e a) (eval' e x) (eval' e y)
eval' e (Syntax.Refl a x) = VReflStrict (eval' e a) (eval' e x)
eval' e (Syntax.AxK a x p pr eq) = strictK (eval' e a) (eval' e x) (eval' e p) (eval' e pr) (eval' e eq)
eval' e (Syntax.AxJ a x p pr y eq) = strictJ (eval' e a) (eval' e x) (eval' e p) (eval' e pr) (eval' e y) (eval' e eq)
idkT :: NFType
idkT = VVar (Defined (T.pack "dunno") (negate 1))
isIdkT :: NFType -> Bool
isIdkT (VVar (Defined (T.unpack -> "dunno") (negate -> 1))) = True
isIdkT _ = False
evalCase :: ElabEnv -> (Value -> Value) -> Value -> [(Term, Int, Term)] -> Value
evalCase env rng sc [] = VCase (getEnv env) (fun rng) sc []
evalCase env rng (VSystem fs) cases = VSystem (fmap (flip (evalCase env rng) cases) fs)
evalCase env rng (VHComp a φ u u0) cases =
comp (fun \i -> rng (v i))
φ
(system \i is1 -> α (u @@ i @@ is1))
(VInc (rng a) φ (α (outS a φ (u @@ VI0) u0)))
where
v = Elab.WiredIn.fill (fun (const a)) φ u u0
α x = evalCase env rng x cases
evalCase env _ sc ((Ref _, _, k):_) = eval' env k @@ sc
evalCase env rng (force -> val@(VNe (HCon _ x) sp)) ((Con x', _, k):xs)
| x == x' = foldl applProj (eval' env k) sp
| otherwise = evalCase env rng val xs
evalCase env rng (force -> val@(VNe (HPCon _ _ x) sp)) ((Con x', _, k):xs)
| x == x' = foldl applProj (eval' env k) sp
| otherwise = evalCase env rng val xs
evalCase _ _ (VVar ((== trueCaseSentinel) -> True)) _ = VI1
evalCase env rng sc xs = VCase (getEnv env) (fun rng) sc xs
-- This is a great big HACK; When we see a system [ case x of ... => p
-- ], we somehow need to make the 'case x of ...' become VI1. The way we
-- do this is by substituting x/trueCaseSentinel in truthAssignments,
-- and then making case trueCaseSentinel of ... => VI1 always.
trueCaseSentinel :: Name
trueCaseSentinel = Bound (T.pack "sentinel for true cases") (-1000)
evalFix' :: HasCallStack => ElabEnv -> Name -> NFType -> Term -> Value
evalFix' env name nft term = fix $ \val -> eval' env{ getEnv = Map.insert name (nft, GluedVl (HVar name) mempty val) (getEnv env) } term
evalFix :: HasCallStack => Name -> NFType -> Term -> ElabM Value
evalFix name nft term = do
t <- ask
pure (evalFix' t name (GluedVl (HVar name) mempty nft) term)
data NotEqual = NotEqual Value Value
deriving (Show, Typeable, Exception)
unify' :: HasCallStack => Bool -> Value -> Value -> ElabM ()
unify' cs topa@(GluedVl h sp a) topb@(GluedVl h' sp' b)
| h == h', length sp == length sp' =
traverse_ (uncurry (unify'Spine cs topa topb)) (Seq.zip sp sp')
`catchElab` \(_ :: SomeException) -> unify' cs a b
unify' canSwitch topa topb = join $ go <$> forceIO topa <*> forceIO topb where
go (VNe (HMeta mv) sp) rhs = solveMeta mv sp rhs
go rhs (VNe (HMeta mv) sp) = solveMeta mv sp rhs
go topa@(VNe (HPCon _ _ x) sp) topb@(VNe (HPCon _ _ y) sp')
| x == y = traverse_ (uncurry (unify'Spine canSwitch topa topb)) (Seq.zip sp sp')
go (VNe (HPCon s _ _) _) rhs | Just v <- trivialSystem s = go v rhs
go lhs (VNe (HPCon s _ _) _) | Just v <- trivialSystem s = go lhs v
go (VCase e _ _ b) (VCase e' _ _ b') = do
env <- ask
let
go (_, _, a) (_, _, b)
| a == b = pure ()
| otherwise = unify' canSwitch (eval' env{getEnv=moreDefinedFrom e e' <$> e} a) (eval' env{getEnv=moreDefinedFrom e e' <$> e'} b)
zipWithM_ go (sortOn (\(x, _, _) -> x) b) (sortOn (\(x, _, _) -> x) b')
go (VCase e _ _ b) y = do
env <- ask
let
go (_, n, a') = do
ns <- replicateM n (VVar <$> newName)
let a = foldl (vApp Ex) (eval' env{getEnv=e} a') ns
unify' canSwitch a y
traverse_ go b
go topa@(VNe x a) topb@(VNe x' a')
| x == x', length a == length a' =
traverse_ (uncurry (unify'Spine canSwitch topa topb)) (Seq.zip a a')
go (VLam p (Closure n k)) vl = do
t <- VVar <$> newName' n
unify' canSwitch (k t) (vApp p vl t)
go vl (VLam p (Closure n k)) = do
t <- VVar <$> newName' n
unify' canSwitch (vApp p vl t) (k t)
go (VPair a b) vl = unify' canSwitch a (vProj1 vl) *> unify' canSwitch b (vProj2 vl)
go vl (VPair a b) = unify' canSwitch (vProj1 vl) a *> unify' canSwitch (vProj2 vl) b
go (VPi p d (Closure n k)) (VPi p' d' (Closure _ k')) | p == p' = do
t <- VVar <$> newName' n
unify' canSwitch d d'
unify' canSwitch (k t) (k' t)
go (VSigma d (Closure n k)) (VSigma d' (Closure _ k')) = do
t <- VVar <$> newName' n
unify' canSwitch d d'
unify' canSwitch (k t) (k' t)
go VType VType = pure ()
go VTypeω VTypeω = pure ()
go VI VI = pure ()
go (VPath l x y) (VPath l' x' y') = do
unify' canSwitch l l'
unify' canSwitch x x'
unify' canSwitch y y'
go (VLine l x y p) p' = do
n <- VVar <$> newName' (Bound (T.singleton 'i') (- 1))
unify' canSwitch (p @@ n) (ielim l x y p' n)
go p' (VLine l x y p) = do
n <- VVar <$> newName
unify' canSwitch (ielim l x y p' n) (p @@ n)
go (VPartial phi r) (VPartial phi' r') = unify' canSwitch phi phi' *> unify' canSwitch r r'
go (VPartialP phi r) (VPartialP phi' r') = unify' canSwitch phi phi' *> unify' canSwitch r r'
go (VSub a phi u) (VSub a' phi' u') = traverse_ (uncurry (unify' canSwitch)) [(a, a'), (phi, phi'), (u, u')]
go (VInc a phi u) (VInc a' phi' u') = traverse_ (uncurry (unify' canSwitch)) [(a, a'), (phi, phi'), (u, u')]
go (VComp a phi u a0) (VComp a' phi' u' a0') =
traverse_ (uncurry (unify' canSwitch)) [(a, a'), (phi, phi'), (u, u'), (a0, a0')]
go (VHComp a phi u a0) (VHComp a' phi' u' a0') =
traverse_ (uncurry (unify' canSwitch)) [(a, a'), (phi, phi'), (u, u'), (a0, a0')]
go (VGlueTy _ (force -> VI1) u _0) rhs = unify' canSwitch (u @@ VReflStrict VI VI1) rhs
go lhs (VGlueTy _ (force -> VI1) u _0) = unify' canSwitch lhs (u @@ VReflStrict VI VI1)
go (VGlueTy a phi u a0) (VGlueTy a' phi' u' a0') =
traverse_ (uncurry (unify' canSwitch)) [(a, a'), (phi, phi'), (u, u'), (a0, a0')]
go (VGlue a phi u a0 t x) (VGlue a' phi' u' a0' t' x') =
traverse_ (uncurry (unify' canSwitch)) [(a, a'), (phi, phi'), (u, u'), (a0, a0'), (t, t'), (x, x')]
go (VUnglue a phi u a0 x) (VUnglue a' phi' u' a0' x') =
traverse_ (uncurry (unify' canSwitch)) [(a, a'), (phi, phi'), (u, u'), (a0, a0'), (x, x')]
go (VSystem sys) rhs = goSystem (unify' canSwitch) sys rhs
go rhs (VSystem sys) = goSystem (flip (unify' canSwitch)) sys rhs
go (VEqStrict a x y) (VEqStrict a' x' y') = traverse_ (uncurry (unify' canSwitch)) [(a, a'), (x, x'), (y, y')]
go (VReflStrict a x) (VReflStrict a' x') = traverse_ (uncurry (unify' canSwitch)) [(a, a'), (x, x')]
go _ VReflStrict{} = pure ()
go VReflStrict{} _ = pure ()
go (VINot x) (VINot y) = unify' canSwitch x y
go x y =
case (toDnf x, toDnf y) of
(Just xs, Just ys) -> unify'Formula xs ys
_ ->
if canSwitch
then goDumb x y
else fail
goDumb (VIOr a b) (VIOr a' b') = unify' canSwitch a a' *> goDumb b b'
goDumb (VIAnd a b) (VIAnd a' b') = unify' canSwitch a a' *> goDumb b b'
goDumb x y = switch $ unify' False x y
goSystem :: (Value -> Value -> ElabM ()) -> Map.Map Value Value -> Value -> ElabM ()
goSystem k sys rhs = do
let rhs_q = quote rhs
env <- ask
for_ (Map.toList sys) $ \(f, i) -> do
let i_q = quote i
for (truthAssignments f (getEnv env)) $ \e -> do
k (eval' env{getEnv = e} i_q) (eval' env{getEnv = e} rhs_q)
fail = throwElab $ NotEqual topa topb
unify'Formula x y
| compareDNFs x y = pure ()
| otherwise = fail
moreDefinedFrom :: Map Name (NFType, Value) -> Map Name (NFType, Value) -> (NFType, Value) -> (NFType, Value)
moreDefinedFrom map1 map2 ours@(_, VNe (HVar name) _) =
case Map.lookup name map1 of
Just (_, VNe HVar{} _) -> map2's
Just (ty, x) -> (ty, x)
Nothing -> map2's
where
map2's = case Map.lookup name map2 of
Just (_, VNe HVar{} _) -> ours
Just (ty, x) -> (ty, x)
Nothing -> ours
moreDefinedFrom _ _ ours = ours
trivialSystem :: Value -> Maybe Value
trivialSystem = go . force where
go VSystem{} = Nothing
go x = Just x
unify'Spine :: Bool -> Value -> Value -> Projection -> Projection -> ElabM ()
unify'Spine cs _ _ (PApp a v) (PApp a' v')
| a == a' = unify' cs v v'
unify'Spine _ _ _ PProj1 PProj1 = pure ()
unify'Spine _ _ _ PProj2 PProj2 = pure ()
unify'Spine cs _ _ (PIElim _ _ _ i) (PIElim _ _ _ j) = unify' cs i j
unify'Spine cs _ _ (POuc a phi u) (POuc a' phi' u') =
traverse_ (uncurry (unify' cs)) [(a, a'), (phi, phi'), (u, u')]
unify'Spine cs _ _ (PK a x p pr) (PK a' x' p' pr') =
traverse_ (uncurry (unify' cs)) [(a, a'), (x, x'), (p, p'), (pr, pr')]
unify'Spine cs _ _ (PJ a x p pr y) (PJ a' x' p' pr' y') =
traverse_ (uncurry (unify' cs)) [(a, a'), (x, x'), (p, p'), (pr, pr'), (y, y')]
unify'Spine _ x y _ _ = throwElab (NotEqual x y)
unify :: HasCallStack => Value -> Value -> ElabM ()
unify x y = shallowly $ go x y where
go topa@(GluedVl h sp a) topb@(GluedVl h' sp' b)
| h == h', length sp == length sp' =
traverse_ (uncurry (unify'Spine True topa topb)) (Seq.zip sp sp')
`catchElab` \(_ :: SomeException) -> unify' True a b
go a b = unify' True a b `catchElab` \(_ :: SomeException) -> liftIO $ throwIO (NotEqual a b)
isConvertibleTo :: Value -> Value -> ElabM (Term -> Term)
isConvertibleTo a b = isConvertibleTo (force a) (force b) where
VPi Im d (Closure _v k) `isConvertibleTo` ty = do
meta <- newMeta d
cont <- k meta `isConvertibleTo` ty
pure (\f -> cont (App Im f (quote meta)))
VType `isConvertibleTo` VTypeω = pure id
VPi p d (Closure _ k) `isConvertibleTo` VPi p' d' (Closure _ k') | p == p' = do
wp <- d' `isConvertibleTo` d
n <- newName
wp_n <- eval (Lam Ex n (wp (Ref n)))
wp' <- k (VVar n) `isConvertibleTo` k' (wp_n @@ VVar n)
pure (\f -> Lam p n (wp' (App p f (wp (Ref n)))))
VPath a x y `isConvertibleTo` VPi Ex d (Closure _ k') = do
unify d VI
nm <- newName
wp <- isConvertibleTo (a @@ VVar nm) (k' (VVar nm))
pure (\f -> Lam Ex nm (wp (IElim (quote a) (quote x) (quote y) f (Ref nm))))
isConvertibleTo a b = do
unify' True a b
pure id
newMeta' :: Bool -> Value -> ElabM Value
newMeta' int dom = do
loc <- liftM2 (,) <$> asks currentFile <*> asks currentSpan
n <- newName
c <- liftIO $ newIORef Nothing
let m = MV (getNameText n) c dom (flatten <$> loc) int
flatten (x, (y, z)) = (x, y, z)
env <- asks getEnv
t <- fmap catMaybes . for (Map.toList env) $ \(n, t) -> pure $
case n of
Bound{} -> Just (PApp Ex (VVar n), n, t)
_ -> Nothing
let
ts = Map.fromList $ fmap (\(_, n, (t, _)) -> (n, t)) t
t' = fmap (\(x, _, _) -> x) t
um <- asks unsolvedMetas
liftIO . atomicModifyIORef um $ \um -> (Map.insert (m ts) [] um, ())
pure (VNe (HMeta (m ts)) (Seq.fromList t'))
newMeta :: Value -> ElabM Value
newMeta = newMeta' False
newName :: MonadIO m => m Name
newName = liftIO $ do
x <- atomicModifyIORef _nameCounter $ \x -> (x + 1, x + 1)
pure (Bound (T.pack (show x)) x)
newName' :: Name -> ElabM Name
newName' n = do
~(Bound _ x) <- newName
pure (Bound (getNameText n) x)
_nameCounter :: IORef Int
_nameCounter = unsafePerformIO $ newIORef 0
{-# NOINLINE _nameCounter #-}
solveMeta :: MV -> Seq Projection -> Value -> ElabM ()
solveMeta m Seq.Empty (VNe (HMeta m') Seq.Empty) | m == m' = pure ()
solveMeta m@(mvCell -> cell) sp rhs = do
when (mvName m == T.pack "2801") do
traceM (VNe (HMeta m) sp)
traceM rhs
env <- ask
names <- tryElab $ checkSpine Set.empty sp
case names of
Right names -> do
scope <- tryElab $ checkScope m (Set.fromList names) rhs
case scope of
Right () -> do
let tm = quote rhs
lam = eval' env $ foldr (Lam Ex) tm names
liftIO . atomicModifyIORef (unsolvedMetas env) $ \mp -> (Map.delete m mp, ())
liftIO . atomicModifyIORef' cell $ \case
Just _ -> error "filled cell in solvedMeta"
Nothing -> (Just lam, ())
Left (_ :: MetaException) -> abort env
Left (_ :: MetaException) -> abort env
where
abort env =
liftIO . atomicModifyIORef' (unsolvedMetas env) $ \x -> (, ()) $
case Map.lookup m x of
Just qs -> Map.insert m ((sp, rhs):qs) x
Nothing -> Map.insert m [(sp, rhs)] x
checkScope :: MV -> Set Name -> Value -> ElabM ()
checkScope mv scope (VNe h sp) =
do
case h of
HVar v@Bound{} ->
unless (v `Set.member` scope) . throwElab $
ScopeCheckingFail v
HVar{} -> pure ()
HCon{} -> pure ()
HPCon{} -> pure ()
HMeta m' -> when (mv == m') $ throwElab $ CircularSolution mv
HData{} -> pure ()
traverse_ checkProj sp
where
checkProj (PApp _ t) = checkScope mv scope t
checkProj (PIElim l x y i) = traverse_ (checkScope mv scope) [l, x, y, i]
checkProj (PK l x y i) = traverse_ (checkScope mv scope) [l, x, y, i]
checkProj (PJ l x y i j) = traverse_ (checkScope mv scope) [l, x, y, i, j]
checkProj (POuc a phi u) = traverse_ (checkScope mv scope) [a, phi, u]
checkProj PProj1 = pure ()
checkProj PProj2 = pure ()
checkScope mv scope (GluedVl _ _p vl) = checkScope mv scope vl
checkScope mv scope (VLam _ (Closure n k)) =
checkScope mv (Set.insert n scope) (k (VVar n))
checkScope mv scope (VPi _ d (Closure n k)) = do
checkScope mv scope d
checkScope mv (Set.insert n scope) (k (VVar n))
checkScope mv scope (VSigma d (Closure n k)) = do
checkScope mv scope d
checkScope mv (Set.insert n scope) (k (VVar n))
checkScope mv s (VPair a b) = traverse_ (checkScope mv s) [a, b]
checkScope _ _ VType = pure ()
checkScope _ _ VTypeω = pure ()
checkScope _ _ VI = pure ()
checkScope _ _ VI0 = pure ()
checkScope _ _ VI1 = pure ()
checkScope mv s (VIAnd x y) = traverse_ (checkScope mv s) [x, y]
checkScope mv s (VIOr x y) = traverse_ (checkScope mv s) [x, y]
checkScope mv s (VINot x) = checkScope mv s x
checkScope mv s (VPath line a b) = traverse_ (checkScope mv s) [line, a, b]
checkScope mv s (VLine _ _ _ line) = checkScope mv s line
checkScope mv s (VPartial x y) = traverse_ (checkScope mv s) [x, y]
checkScope mv s (VPartialP x y) = traverse_ (checkScope mv s) [x, y]
checkScope mv s (VSystem fs) =
for_ (Map.toList fs) $ \(x, y) -> traverse_ (checkScope mv s) [x, y]
checkScope mv s (VSub a b c) = traverse_ (checkScope mv s) [a, b, c]
checkScope mv s (VInc a b c) = traverse_ (checkScope mv s) [a, b, c]
checkScope mv s (VComp a phi u a0) = traverse_ (checkScope mv s) [a, phi, u, a0]
checkScope mv s (VHComp a phi u a0) = traverse_ (checkScope mv s) [a, phi, u, a0]
checkScope mv s (VGlueTy a phi ty eq) = traverse_ (checkScope mv s) [a, phi, ty, eq]
checkScope mv s (VGlue a phi ty eq inv x) = traverse_ (checkScope mv s) [a, phi, ty, eq, inv, x]
checkScope mv s (VUnglue a phi ty eq vl) = traverse_ (checkScope mv s) [a, phi, ty, eq, vl]
checkScope mv s (VCase _ _ v _) = checkScope mv s v
checkScope mv s (VEqStrict a x y) = traverse_ (checkScope mv s) [a, x, y]
checkScope mv s (VReflStrict a x) = traverse_ (checkScope mv s) [a, x]
checkSpine :: Set Name -> Seq Projection -> ElabM [Name]
checkSpine scope (PApp Ex (VVar n@Bound{}) Seq.:<| xs)
| n `Set.member` scope = throwElab $ NonLinearSpine n
| otherwise = (n:) <$> checkSpine scope xs
checkSpine _ (p Seq.:<| _) = throwElab $ SpineProj p
checkSpine _ Seq.Empty = pure []
data MetaException = NonLinearSpine { getDupeName :: Name }
| SpineProj { getSpineProjection :: Projection }
| CircularSolution { getCycle :: MV }
| ScopeCheckingFail { outOfScope :: Name }
deriving (Show, Typeable, Exception)
substituteIO :: Map.Map Name Value -> Value -> IO Value
substituteIO sub = substituteIO . force where
substituteIO (VNe hd sp) = do
sp' <- traverse (substituteSp sub) sp
case hd of
HVar v ->
case Map.lookup v sub of
Just vl -> substituteIO $ foldl applProj vl sp'
Nothing -> pure $ foldl applProj (VNe hd mempty) sp'
hd -> pure $ VNe hd sp'
substituteIO (GluedVl h sp vl) = GluedVl h <$> traverse (substituteSp sub) sp <*> substituteIO vl
substituteIO (VLam p (Closure s k)) = pure $ VLam p (Closure s (substitute (Map.delete s sub) . k))
substituteIO (VPi p d (Closure s k)) = VPi p <$> substituteIO d <*> pure (Closure s (substitute (Map.delete s sub) . k))
substituteIO (VSigma d (Closure s k)) = VSigma <$> substituteIO d <*> pure (Closure s (substitute (Map.delete s sub) . k))
substituteIO (VPair a b) = VPair <$> substituteIO a <*> substituteIO b
substituteIO (VPath line x y) = VPath <$> substituteIO line <*> substituteIO x <*> substituteIO y
substituteIO (VLine line x y f) = VLine <$> substituteIO line <*> substituteIO x <*> substituteIO y <*> substituteIO f
substituteIO VType = pure VType
substituteIO VTypeω = pure VTypeω
substituteIO VI = pure VI
substituteIO VI0 = pure VI0
substituteIO VI1 = pure VI1
substituteIO (VIAnd x y) = iand <$> substituteIO x <*> substituteIO y
substituteIO (VIOr x y) = ior <$> substituteIO x <*> substituteIO y
substituteIO (VINot x) = inot <$> substituteIO x
substituteIO (VPartial x y) = VPartial <$> substituteIO x <*> substituteIO y
substituteIO (VPartialP x y) = VPartialP <$> substituteIO x <*> substituteIO y
substituteIO (VSystem fs) = do
t <- for (Map.toList fs) $ \(a, b) -> (,) <$> substituteIO a <*> substituteIO b
pure (mkVSystem (Map.fromList t))
substituteIO (VSub a b c) = VSub <$> substituteIO a <*> substituteIO b <*> substituteIO c
substituteIO (VInc a b c) = incS <$> substituteIO a <*> substituteIO b <*> substituteIO c
substituteIO (VComp a b c d) = comp <$> substituteIO a <*> substituteIO b <*> substituteIO c <*> substituteIO d
substituteIO (VHComp a b c d) = hComp <$> substituteIO a <*> substituteIO b <*> substituteIO c <*> substituteIO d
substituteIO (VGlueTy a phi ty e) = glueType <$> substituteIO a <*> substituteIO phi <*> substituteIO ty <*> substituteIO e
substituteIO (VGlue a phi ty e t x) = glueElem <$> substituteIO a <*> substituteIO phi <*> substituteIO ty <*> substituteIO e <*> substituteIO t <*> substituteIO x
substituteIO (VUnglue a phi ty e x) = unglue <$> substituteIO a <*> substituteIO phi <*> substituteIO ty <*> substituteIO e <*> substituteIO x
substituteIO (VCase env t x xs) = VCase env <$> substituteIO t <*> substituteIO x <*> pure xs
substituteIO (VEqStrict a x y) = VEqStrict <$> substituteIO a <*> substituteIO x <*> substituteIO y
substituteIO (VReflStrict a x) = VReflStrict <$> substituteIO a <*> substituteIO x
substitute :: Map Name Value -> Value -> Value
substitute sub = unsafePerformIO . substituteIO sub
substituteSp :: Map Name Value -> Projection -> IO Projection
substituteSp sub (PApp p x) = PApp p <$> substituteIO sub x
substituteSp sub (PIElim l x y i) = PIElim <$> substituteIO sub l <*> substituteIO sub x <*> substituteIO sub y <*> substituteIO sub i
substituteSp sub (PK l x y i) = PK <$> substituteIO sub l <*> substituteIO sub x <*> substituteIO sub y <*> substituteIO sub i
substituteSp sub (PJ l x y i j) = PJ <$> substituteIO sub l <*> substituteIO sub x <*> substituteIO sub y <*> substituteIO sub i <*> substituteIO sub j
substituteSp sub (POuc a phi u) = POuc <$> substituteIO sub a <*> substituteIO sub phi <*> substituteIO sub u
substituteSp _ PProj1 = pure PProj1
substituteSp _ PProj2 = pure PProj2
mkVSystem :: Map.Map Value Value -> Value
mkVSystem vals =
let map' = Map.fromList (Map.toList vals >>= go)
go (x, y) =
case (force x, y) of
(VI0, _) -> []
(VIOr _ _, VSystem y) -> Map.toList y >>= go
(a, b) -> [(a, b)]
in case Map.lookup VI1 map' of
Just x -> x
Nothing -> VSystem map'
forceIO :: MonadIO m => Value -> m Value
forceIO mv@(VNe (HMeta (mvCell -> cell)) args) = do
solved <- liftIO $ readIORef cell
case solved of
Just vl -> forceIO (foldl applProj vl args)
Nothing -> pure mv
forceIO vl@(VSystem fs) =
case Map.lookup VI1 fs of
Just x -> forceIO x
Nothing -> pure vl
forceIO (GluedVl _ _ vl) = forceIO vl
forceIO (VComp line phi u a0) = comp <$> forceIO line <*> forceIO phi <*> pure u <*> pure a0
forceIO (VHComp line phi u a0) = hComp <$> forceIO line <*> forceIO phi <*> pure u <*> pure a0
forceIO (VCase env rng v vs) = do
env' <- liftIO emptyEnv
r <- forceIO rng
evalCase env'{getEnv=env} (r @@) <$> forceIO v <*> pure vs
forceIO x = pure x
force :: Value -> Value
force = unsafePerformIO . forceIO
applProj :: HasCallStack => Value -> Projection -> Value
applProj fun (PApp p arg) = vApp p fun arg
applProj fun (PIElim l x y i) = ielim l x y fun i
applProj fun (POuc a phi u) = outS a phi u fun
applProj fun (PK a x p pr) = strictK a x p pr fun
applProj fun (PJ a x p pr y) = strictJ a x p pr y fun
applProj fun PProj1 = vProj1 fun
applProj fun PProj2 = vProj2 fun
vApp :: HasCallStack => Plicity -> Value -> Value -> Value
vApp _ (VLam _ k) arg = clCont k arg
vApp p (VNe (HData True n) _) _ | T.unpack (getNameText n) == "S1" = undefined
vApp p (VNe h sp) arg = VNe h (sp Seq.:|> PApp p arg)
vApp p (GluedVl h sp vl) arg = GluedVl h (sp Seq.:|> PApp p arg) (vApp p vl arg)
vApp p (VSystem fs) arg = mkVSystem (fmap (flip (vApp p) arg) fs)
vApp p (VCase env rng sc branches) arg =
VCase env (fun \x -> let VPi _ _ (Closure _ r) = rng @@ x in r arg) sc
(map (projIntoCase (flip (App p) (quote arg))) branches)
-- vApp _ (VLine _ _ _ (VLam _ k)) arg = clCont k arg
vApp _ x _ = error $ "can't apply " ++ show (prettyTm (quote x))
(@@) :: HasCallStack => Value -> Value -> Value
(@@) = vApp Ex
infixl 9 @@
vProj1 :: HasCallStack => Value -> Value
vProj1 (VPair a _) = a
vProj1 (VNe h sp) = VNe h (sp Seq.:|> PProj1)
vProj1 (GluedVl h sp vl) = GluedVl h (sp Seq.:|> PProj1) (vProj1 vl)
vProj1 (VSystem fs) = VSystem (fmap vProj1 fs)
vProj1 (VInc (VSigma a _) b c) = incS a b (vProj1 c)
vProj1 (VCase env rng sc branches) =
VCase env rng sc (map (projIntoCase Proj1) branches)
vProj1 x = error $ "can't proj1 " ++ show x
vProj2 :: HasCallStack => Value -> Value
vProj2 (VPair _ b) = b
vProj2 (VNe h sp) = VNe h (sp Seq.:|> PProj2)
vProj2 (GluedVl h sp vl) = GluedVl h (sp Seq.:|> PProj2) (vProj2 vl)
vProj2 (VSystem fs) = VSystem (fmap vProj2 fs)
vProj2 (VInc (VSigma _ (Closure _ r)) b c) = incS (r (vProj1 c)) b (vProj2 c)
vProj2 (VCase env rng sc branches) =
VCase env rng sc (map (projIntoCase Proj2) branches)
vProj2 x = error $ "can't proj2 " ++ show (prettyTm (quote x))