From c318bfaf67c3d6cc50ae1c0c292ab5dc3d64781b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Abigail=20Magalh=C3=A3es?= Date: Sat, 10 Apr 2021 03:04:50 -0300 Subject: [PATCH] Small tweaks to some builtins MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * Remove [φ] since it's the same thing as φ ≡s i1 * Change the type of comp to reflect that the returned element agrees with the sides on i1. --- intro.tt | 138 ++++++++++++++++++++++++++++--------------- src/Elab.hs | 32 +++++----- src/Elab/Eval.hs | 68 ++++++++++----------- src/Elab/WiredIn.hs | 65 ++++++++++---------- src/Main.hs | 13 ++-- src/Syntax.hs | 16 +---- src/Syntax/Pretty.hs | 9 +-- 7 files changed, 188 insertions(+), 153 deletions(-) diff --git a/intro.tt b/intro.tt index 438f6b2..5f1e436 100644 --- a/intro.tt +++ b/intro.tt @@ -141,18 +141,29 @@ funext h i x = h x i -- The proposition associated with an element of the interval ------------------------------------------------------------- +Eq_s : {A : Pretype} -> A -> A -> Pretype +{-# PRIMITIVE Eq_s #-} + +refl_s : {A : Pretype} {x : A} -> Eq_s x x +{-# PRIMITIVE refl_s #-} + +J_s : {A : Pretype} {x : A} (P : (y : A) -> Eq_s x y -> Pretype) -> P x (refl_s {A} {x}) -> {y : A} -> (p : Eq_s x y) -> P y p +{-# PRIMITIVE J_s #-} + +K_s : {A : Pretype} {x : A} (P : Eq_s x x -> Pretype) -> P (refl_s {A} {x}) -> (p : Eq_s x x) -> P p +{-# PRIMITIVE K_s #-} + -- Associated with every element i : I of the interval, we have the type -- IsOne i which is inhabited only when i = i1. In the model, this -- corresponds to the map [φ] from the interval cubical set to the -- subobject classifier. IsOne : I -> Pretype -{-# PRIMITIVE IsOne #-} +IsOne i = Eq_s i i1 -- The value itIs1 witnesses the fact that i1 = i1. itIs1 : IsOne i1 - -{-# PRIMITIVE itIs1 #-} +itIs1 = refl_s -- Partial elements ------------------- @@ -212,8 +223,11 @@ outS : {A : Type} {phi : I} {u : Partial phi A} -> Sub A phi u -> A -- and specifying that an element agrees with a partial cube, -- we can describe the composition operation. +primComp : (A : I -> Type) {phi : I} (u : (i : I) -> Partial phi (A i)) -> Sub (A i0) phi (u i0) -> Sub (A i1) phi (u i1) +{-# PRIMITIVE comp primComp #-} + comp : (A : I -> Type) {phi : I} (u : (i : I) -> Partial phi (A i)) -> Sub (A i0) phi (u i0) -> A i1 -{-# PRIMITIVE comp #-} +comp A {phi} u a0 = outS (primComp A {phi} u a0) -- In particular, when φ is a disjunction of the form -- (j = 0) || (j = 1), we can draw u as being a pair of lines forming a @@ -259,7 +273,7 @@ transp A x = comp A {i0} (\i [ ]) (inS x) -- Since we have the iand operator, we can also derive the *filler* of a cube, -- which connects the given face and the output of composition. -fill : (A : I -> Type) {phi : I} (u : (i : I) -> Partial phi (A i)) -> Sub (A i0) phi (u i0) -> (i : I) -> A i +fill : (A : I -> Type) {phi : I} (u : (i : I) -> Partial phi (A i)) (a0 : Sub (A i0) phi (u i0)) -> PathP A (outS a0) (comp A {phi} u a0) fill A {phi} u a0 i = comp (\j -> A (iand i j)) {ior phi (inot i)} @@ -269,7 +283,7 @@ fill A {phi} u a0 i = hcomp : {A : Type} {phi : I} (u : (i : I) -> Partial phi A) -> Sub A phi (u i0) -> A hcomp {A} {phi} u a0 = comp (\i -> A) {phi} u a0 -hfill : {A : Type} {phi : I} (u : (i : I) -> Partial phi A) -> (a0 : Sub A phi (u i0)) -> I -> A +hfill : {A : Type} {phi : I} (u : (i : I) -> Partial phi A) -> (a0 : Sub A phi (u i0)) -> Path (outS a0) (hcomp u a0) hfill {A} {phi} u a0 i = fill (\i -> A) {phi} u a0 i -- For instance, the filler of the previous composition square @@ -278,8 +292,8 @@ hfill {A} {phi} u a0 i = fill (\i -> A) {phi} u a0 i transRefl : {A : Type} {x : A} {y : A} (p : Path x y) -> Path (trans p refl) p transRefl p j i = fill (\i -> A) {ior i (inot i)} (\k [ (i = i0) -> x, (i = i1) -> y ]) (inS (p i)) (inot j) -transpFill : {A : Type} (x : A) -> Path x (transp (\i -> A) x) -transpFill {A} x i = fill (\i -> A) (\k []) (inS x) i +transpFill : {A : I -> Type} (x : A i0) -> PathP A x (transp (\i -> A i) x) +transpFill {A} x i = fill (\i -> A i) (\k []) (inS x) i -- Reduction of composition --------------------------- @@ -315,7 +329,7 @@ transpDFun f = refl -- path f(x) = y. fiber : {A : Type} {B : Type} -> (A -> B) -> B -> Type -fiber f y = (x : A) * Path (f x) y +fiber f y = (x : A) * Path y (f x) -- An *equivalence* is a function where every fiber is contractible. -- That is, for every point in the codomain y : B, there is exactly one @@ -327,13 +341,11 @@ isEquiv {A} {B} f = (y : B) -> isContr (fiber {A} {B} f y) -- By extracting this point, which must exist because the fiber is contractible, -- we can get an inverse of f: -inverse : {A : Type} {B : Type} {f : A -> B} -> isEquiv f -> B -> A -inverse eqv y = (eqv y) .1 .1 +invert : {A : Type} {B : Type} {f : A -> B} -> isEquiv f -> B -> A +invert eqv y = (eqv y) .1 .1 --- We can prove that «inverse eqv» is a section of f: - -section : {A : Type} {B : Type} (f : A -> B) (eqv : isEquiv f) -> Path (\x -> f (inverse eqv x)) id -section f eqv i y = (eqv y) .1 .2 i +retract : {A : Type} {B : Type} -> (A -> B) -> (B -> A) -> Type +retract {A} {B} f g = (a : A) -> Path (g (f a)) a contr : {A : Type} {phi : I} -> isContr A -> (u : Partial phi A) -> A contr {A} {phi} p u = comp (\i -> A) {phi} (\i is1 -> p.2 (u is1) i) (inS (p.1)) @@ -348,7 +360,7 @@ Equiv A B = (f : A -> B) * isEquiv {A} {B} f -- The identity function is an equivalence between any type A and -- itself. idEquiv : {A : Type} -> isEquiv (id {A}) -idEquiv y = ((y, \i -> y), \u i -> (u.2 (inot i), \j -> u.2 (ior (inot i) j))) +idEquiv y = ((y, \i -> y), \u i -> (u.2 i, \j -> u.2 (iand i j))) -- The glue operation expresses that "extensibility is invariant under -- equivalence". Less concisely, the Glue type and its constructor, @@ -377,6 +389,12 @@ prim'glue : {A : Type} {phi : I} {T : Partial phi Type} {e : PartialP phi (\o -> {-# PRIMITIVE glue prim'glue #-} +glue : {A : Type} {phi : I} {Te : Partial phi ((T : Type) * Equiv T A)} + -> (t : PartialP phi (\o -> (Te o).1)) + -> (im : Sub A phi (\o -> (Te o).2.1 (t o))) + -> primGlue A {phi} (\o -> (Te o).1) (\o -> (Te o).2) +glue {A} {phi} {Te} t im = prim'glue {A} {phi} {\o -> (Te o).1} {\o -> (Te o).2} t im + -- The unglue operation undoes a glueing. Since when φ = i1, -- Glue A [φ -> (T, f)] = T, the argument to primUnglue {A} {i1} ... -- will have type T, and so to get back an A we need to apply the @@ -387,6 +405,10 @@ primUnglue : {A : Type} {phi : I} {T : Partial phi Type} {e : PartialP phi (\o - {-# PRIMITIVE unglue primUnglue #-} +unglue : {A : Type} (phi : I) {Te : Partial phi ((T : Type) * Equiv T A)} + -> primGlue A {phi} (\o -> (Te o).1) (\o -> (Te o).2) -> A +unglue {A} phi {Te} = primUnglue {A} {phi} {\o -> (Te o).1} {\o -> (Te o).2} + -- Diagramatically, i : I |- Glue A [(i \/ ~i) -> (T, e)] can be drawn -- as giving us the dotted line in: -- @@ -425,6 +447,11 @@ univalence {A} {B} equiv i = Glue B (\[ (i = i0) -> (A, equiv), (i = i1) -> (B, the B, idEquiv {B}) ]) +lineToEquiv : (A : I -> Type) -> Equiv (A i0) (A i1) +{-# PRIMITIVE lineToEquiv #-} + +idToEquiv : {A : Type} {B : Type} -> Path A B -> Equiv A B +idToEquiv p = lineToEquiv (\i -> p i) -- The fact that this diagram has 2 filled-in B sides explains the -- complication in the proof below. @@ -517,15 +544,15 @@ IsoToEquiv {A} {B} iso = (f, \y -> (fCenter y, fIsCenter y)) where s = iso.2.2.1 t = iso.2.2.2 - lemIso : (y : B) (x0 : A) (x1 : A) (p0 : Path (f x0) y) (p1 : Path (f x1) y) + lemIso : (y : B) (x0 : A) (x1 : A) (p0 : Path y (f x0)) (p1 : Path y (f x1)) -> PathP (\i -> fiber f y) (x0, p0) (x1, p1) lemIso y x0 x1 p0 p1 = let rem0 : Path x0 (g y) - rem0 i = comp (\i -> A) (\k [ (i = i0) -> t x0 k, (i = i1) -> g y ]) (inS (g (p0 i))) + rem0 i = comp (\i -> A) (\k [ (i = i0) -> t x0 k, (i = i1) -> g y ]) (inS (g (p0 (inot i)))) rem1 : Path x1 (g y) - rem1 i = comp (\i -> A) (\k [ (i = i0) -> t x1 k, (i = i1) -> g y ]) (inS (g (p1 i))) + rem1 i = comp (\i -> A) (\k [ (i = i0) -> t x1 k, (i = i1) -> g y ]) (inS (g (p1 (inot i)))) p : Path x0 x1 p i = comp (\i -> A) (\k [ (i = i0) -> rem0 (inot k), (i = i1) -> rem1 (inot k) ]) (inS (g y)) @@ -533,15 +560,15 @@ IsoToEquiv {A} {B} iso = (f, \y -> (fCenter y, fIsCenter y)) where fill0 : I -> I -> A fill0 i j = comp (\i -> A) (\k [ (i = i0) -> t x0 (iand j k) , (i = i1) -> g y - , (j = i0) -> g (p0 i) + , (j = i0) -> g (p0 (inot i)) ]) - (inS (g (p0 i))) + (inS (g (p0 (inot i)))) fill1 : I -> I -> A fill1 i j = comp (\i -> A) (\k [ (i = i0) -> t x1 (iand j k) , (i = i1) -> g y - , (j = i0) -> g (p1 i) ]) - (inS (g (p1 i))) + , (j = i0) -> g (p1 (inot i)) ]) + (inS (g (p1 (inot i)))) fill2 : I -> I -> A fill2 i j = comp (\i -> A) (\k [ (i = i0) -> rem0 (ior j (inot k)) @@ -557,16 +584,16 @@ IsoToEquiv {A} {B} iso = (f, \y -> (fCenter y, fIsCenter y)) where (inS (fill2 i j)) sq1 : I -> I -> B - sq1 i j = comp (\i -> B) (\k [ (i = i0) -> s (p0 j) k - , (i = i1) -> s (p1 j) k + sq1 i j = comp (\i -> B) (\k [ (i = i0) -> s (p0 (inot j)) k + , (i = i1) -> s (p1 (inot j)) k , (j = i0) -> s (f (p i)) k , (j = i1) -> s y k ]) (inS (f (sq i j))) - in \i -> (p i, \j -> sq1 i j) + in \i -> (p i, \j -> sq1 i (inot j)) fCenter : (y : B) -> fiber f y - fCenter y = (g y, s y) + fCenter y = (g y, sym (s y)) fIsCenter : (y : B) (w : fiber f y) -> Path (fCenter y) w fIsCenter y w = lemIso y (fCenter y).1 w.1 (fCenter y).2 w.2 @@ -653,8 +680,12 @@ trueNotFalse p = transp (\i -> if (Bool -> Bool) Bottom (p i)) id -- -- isHSet A = (x : A) (y : A) -> isHProp (Path x y) -- + +isProp : Type -> Type +isProp A = (x : A) (y : A) -> Path x y + isHSet : Type -> Type -isHSet A = {x : A} {y : A} (p : Path x y) (q : Path x y) -> Path p q +isHSet A = (x : A) (y : A) -> isProp (Path x y) -- We can prove *a* contradiction (note: this is a direct proof!) by adversarially -- choosing two paths p, q that we know are not equal. Since "equal" paths have @@ -665,7 +696,7 @@ isHSet A = {x : A} {y : A} (p : Path x y) (q : Path x y) -> Path p q -- of false as the point x is just from the endpoints of trueNotFalse. universeNotSet : isHSet Type -> Bottom -universeNotSet itIs = trueNotFalse (\i -> transp (\j -> itIs notp refl i j) false) +universeNotSet itIs = trueNotFalse (\i -> transp (\j -> itIs Bool Bool notp refl i j) false) -- Funext is an inverse of happly --------------------------------- @@ -1048,9 +1079,6 @@ four = multInt two two sixteen : Int sixteen = multInt four four -isProp : Type -> Type -isProp A = (x : A) (y : A) -> Path x y - Prop : Type Prop = (A : Type) * isProp A @@ -1059,7 +1087,7 @@ data Sq (A : Type) : Type where sq i : (x : Sq A) (y : Sq A) -> Sq A [ (i = i0) -> x, (i = i1) -> y ] isProp_isSet : {A : Type} -> isProp A -> isHSet A -isProp_isSet h {a} {b} p q j i = +isProp_isSet h a b p q j i = hcomp {A} (\k [ (i = i0) -> h a a k , (i = i1) -> h a b k @@ -1069,7 +1097,7 @@ isProp_isSet h {a} {b} p q j i = (inS a) isProp_isProp : {A : Type} -> isProp (isProp A) -isProp_isProp f g i a b = isProp_isSet f {a} {b} (f a b) (g a b) i +isProp_isProp f g i a b = isProp_isSet f a b (f a b) (g a b) i Sq_rec : {A : Type} {B : Type} -> isProp B @@ -1161,15 +1189,6 @@ S3IsSuspS2 = univalence (IsoToEquiv iso) where iso : Iso S3 (Susp S2) iso = (fromS3, toS3, fromToS3, toFromS3) -Eq_s : {A : Pretype} -> A -> A -> Pretype -{-# PRIMITIVE Eq_s #-} - -refl_s : {A : Pretype} {x : A} -> Eq_s x x -{-# PRIMITIVE refl_s #-} - -J_s : {A : Pretype} {x : A} (P : (y : A) -> Eq_s x y -> Pretype) -> P x (refl_s {A} {x}) -> {y : A} -> (p : Eq_s x y) -> P y p -{-# PRIMITIVE J_s #-} - ap_s : {A : Pretype} {B : Pretype} (f : A -> B) {x : A} {y : A} -> Eq_s x y -> Eq_s (f x) (f y) ap_s {A} {B} f {x} {y} = J_s (\y p -> Eq_s (f x) (f y)) refl_s @@ -1179,9 +1198,6 @@ subst_s {A} P {x} {z} p px = J_s {A} {x} (\y p -> P x -> P y) id p px sym_s : {A : Pretype} {x : A} {y : A} -> Eq_s x y -> Eq_s y x sym_s {A} {x} {y} = J_s {A} {x} (\y p -> Eq_s y x) refl_s -K_s : {A : Pretype} {x : A} (P : Eq_s x x -> Pretype) -> P (refl_s {A} {x}) -> (p : Eq_s x x) -> P p -{-# PRIMITIVE K_s #-} - UIP : {A : Pretype} {x : A} {y : A} (p : Eq_s x y) (q : Eq_s x y) -> Eq_s p q UIP {A} {x} {y} p q = J_s (\y p -> (q : Eq_s x y) -> Eq_s p q) (uipRefl A x) p q where uipRefl : (A : Pretype) (x : A) (p : Eq_s x x) -> Eq_s refl_s p @@ -1217,11 +1233,35 @@ pathToEqS_K {A} {x} p_to_s P pr loop = transp (\i -> P (inv x loop i)) psloop wh aux = seq_pathRefl (p_to_s (\i -> x)) pathToEq_isSet : {A : Type} -> ({x : A} {y : A} -> Path x y -> Eq_s x y) -> isHSet A -pathToEq_isSet {A} p_to_s {x} {y} p q = axK_to_isSet {A} (\{x} -> pathToEqS_K {A} {x} p_to_s) {x} {y} p q where +pathToEq_isSet {A} p_to_s = axK_to_isSet {A} (\{x} -> pathToEqS_K {A} {x} p_to_s) where axK_to_isSet : {A : Type} -> ({x : A} -> (P : Path x x -> Type) -> P refl -> (p : Path x x) -> P p) -> isHSet A - axK_to_isSet K {x} {y} p q = J (\y p -> (q : Path x y) -> Path p q) (uipRefl x) p q where + axK_to_isSet K x y p q = J (\y p -> (q : Path x y) -> Path p q) (uipRefl x) p q where uipRefl : (x : A) (p : Path x x) -> Path refl p uipRefl x p = K {x} (\q -> Path refl q) refl p Nat_isSet : isHSet Nat -Nat_isSet {x} {y} = pathToEq_isSet {Nat} (\{x} {y} -> Path_nat_strict_nat x y) {x} {y} \ No newline at end of file +Nat_isSet = pathToEq_isSet {Nat} (\{x} {y} -> Path_nat_strict_nat x y) + +equivCtr : {A : Type} {B : Type} (e : Equiv A B) (y : B) -> fiber e.1 y +equivCtr e y = (e.2 y).1 + +equivCtrPath : {A : Type} {B : Type} (e : Equiv A B) (y : B) + -> (v : fiber e.1 y) -> Path (equivCtr e y) v +equivCtrPath e y = (e.2 y).2 + +contr : {A : Type} {phi : I} -> isContr A -> (u : Partial phi A) -> Sub A phi u +contr {A} {phi} p u = primComp (\i -> A) (\i [ (phi = i1) as c -> p.2 (u c) i ]) (inS p.1) + +contr' : {A : Type} -> ({phi : I} -> (u : Partial phi A) -> Sub A phi u) -> isContr A +contr' {A} contr = (x, \y i -> outS (contr (\ [ (i = i0) -> x, (i = i1) -> y ])) ) where + x : A + x = outS (contr (\ [])) + +leftIsOne : {a : I} {b : I} -> Eq_s a i1 -> Eq_s (ior a b) i1 +leftIsOne {a} {b} p = J_s {I} {i1} (\i p -> IsOne (ior i b)) refl_s (sym_s p) + +rightIsOne : {a : I} {b : I} -> Eq_s b i1 -> Eq_s (ior a b) i1 +rightIsOne {a} {b} p = J_s {I} {i1} (\i p -> IsOne (ior a i)) refl_s (sym_s p) + +bothAreOne : {a : I} {b : I} -> Eq_s a i1 -> Eq_s b i1 -> Eq_s (iand a b) i1 +bothAreOne {a} {b} p q = J_s {I} {i1} (\i p -> IsOne (iand i b)) q (sym_s p) \ No newline at end of file diff --git a/src/Elab.hs b/src/Elab.hs index 0b07e20..b1cea92 100644 --- a/src/Elab.hs +++ b/src/Elab.hs @@ -55,10 +55,10 @@ infer (P.App p f x) = do x_nf <- eval x pure (IElim (quote (fun li)) (quote le) (quote ri) (wp f) x, li x_nf) It'sPartial phi a w -> do - x <- check x (VIsOne phi) + x <- check x (VEqStrict VI phi VI1) pure (App P.Ex (w f) x, a) It'sPartialP phi a w -> do - x <- check x (VIsOne phi) + x <- check x (VEqStrict VI phi VI1) x_nf <- eval x pure (App P.Ex (w f) x, a @@ x_nf) @@ -108,11 +108,11 @@ check (P.Lam p v b) ty = do pure (wp (PathIntro (quote (fun li)) (quote le) (quote ri) tm)) It'sPartial phi a wp -> - assume (Bound v 0) (VIsOne phi) $ \var -> + assume (Bound v 0) (VEqStrict VI phi VI1) $ \var -> wp . Lam p var <$> check b a It'sPartialP phi a wp -> - assume (Bound v 0) (VIsOne phi) $ \var -> + assume (Bound v 0) (VEqStrict VI phi VI1) $ \var -> wp . Lam p var <$> check b (a @@ VVar var) check (P.Pair a b) ty = do @@ -149,16 +149,18 @@ check (P.LamSystem bs) ty = do eqns <- for (zip [(0 :: Int)..] bs) $ \(n, (formula, rhs)) -> do phi <- checkFormula (P.condF formula) rhses <- - case P.condV formula of - Just t -> assume (Bound t 0) (VIsOne phi) $ \var -> do - env <- ask - for (truthAssignments phi (getEnv env)) $ \e -> do - let env' = env{ getEnv = e } + case P.condV formula of + Just t -> assume (Bound t 0) (VEqStrict VI phi VI1) $ \var -> do + env <- ask + for (truthAssignments phi (getEnv env)) $ \e -> do + let env' = env{ getEnv = e } + local (const env') $ (Just var,) <$> check rhs (eval' env' dom_q) - Nothing -> do - env <- ask - for (truthAssignments phi (getEnv env)) $ \e -> do - let env' = env{ getEnv = e } + Nothing -> do + env <- ask + for (truthAssignments phi (getEnv env)) $ \e -> do + let env' = env{ getEnv = e } + local (const env') $ (Nothing,) <$> check rhs (eval' env' dom_q) pure (n, (phi, head rhses)) @@ -167,12 +169,12 @@ check (P.LamSystem bs) ty = do for_ eqns $ \(n, (formula, (binding, rhs))) -> do let k = case binding of - Just v -> assume v (VIsOne formula) . const + Just v -> assume v (VEqStrict VI formula VI1) . const Nothing -> id k $ for_ eqns $ \(n', (formula', (binding, rhs'))) -> do let k = case binding of - Just v -> assume v (VIsOne formula) . const + Just v -> assume v (VEqStrict VI formula VI1) . const Nothing -> id truth = possible mempty (iand formula formula') add [] = id diff --git a/src/Elab/Eval.hs b/src/Elab/Eval.hs index b9ea7a1..6c57dda 100644 --- a/src/Elab/Eval.hs +++ b/src/Elab/Eval.hs @@ -76,9 +76,6 @@ zonkIO (VIAnd x y) = iand <$> zonkIO x <*> zonkIO y zonkIO (VIOr x y) = ior <$> zonkIO x <*> zonkIO y zonkIO (VINot x) = inot <$> zonkIO x -zonkIO (VIsOne x) = VIsOne <$> zonkIO x -zonkIO VItIsOne = pure VItIsOne - zonkIO (VPartial x y) = VPartial <$> zonkIO x <*> zonkIO y zonkIO (VPartialP x y) = VPartialP <$> zonkIO x <*> zonkIO y zonkIO (VSystem fs) = do @@ -164,9 +161,6 @@ eval' e (PathP l a b) = VPath (eval' e l) (eval' e a) (eval' e b) eval' e (IElim l x y f i) = ielim (eval' e l) (eval' e x) (eval' e y) (eval' e f) (eval' e i) eval' e (PathIntro p x y f) = VLine (eval' e p) (eval' e x) (eval' e y) (eval' e f) -eval' e (IsOne i) = VIsOne (eval' e i) -eval' _ ItIsOne = VItIsOne - eval' e (Partial x y) = VPartial (eval' e x) (eval' e y) eval' e (PartialP x y) = VPartialP (eval' e x) (eval' e y) eval' e (System fs) = mkVSystem (Map.fromList $ map (\(x, y) -> (eval' e x, eval' e y)) $ Map.toList $ fs) @@ -231,6 +225,8 @@ data NotEqual = NotEqual Value Value deriving (Show, Typeable, Exception) unify' :: HasCallStack => Value -> Value -> ElabM () +-- unify' (GluedVl h sp _) (GluedVl h' sp' _) +-- | h == h', length sp == length sp' = traverse_ (uncurry unify'Spine) (Seq.zip sp sp') unify' topa topb = join $ go <$> forceIO topa <*> forceIO topb where go (VNe (HMeta mv) sp) rhs = solveMeta mv sp rhs go rhs (VNe (HMeta mv) sp) = solveMeta mv sp rhs @@ -296,12 +292,6 @@ unify' topa topb = join $ go <$> forceIO topa <*> forceIO topb where n <- VVar <$> newName unify' (ielim l x y p' n) (p @@ n) - go (VIsOne x) (VIsOne y) = unify' x y - - -- IsOne is proof-irrelevant: - go VItIsOne _ = pure () - go _ VItIsOne = pure () - go (VPartial phi r) (VPartial phi' r') = unify' phi phi' *> unify' r r' go (VPartialP phi r) (VPartialP phi' r') = unify' phi phi' *> unify' r r' @@ -311,8 +301,8 @@ unify' topa topb = join $ go <$> forceIO topa <*> forceIO topb where go (VComp a phi u a0) (VComp a' phi' u' a0') = traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u'), (a0, a0')] - go (VGlueTy _ (force -> VI1) u _0) rhs = unify' (u @@ VItIsOne) rhs - go lhs (VGlueTy _ (force -> VI1) u _0) = unify' lhs (u @@ VItIsOne) + go (VGlueTy _ (force -> VI1) u _0) rhs = unify' (u @@ VReflStrict VI VI1) rhs + go lhs (VGlueTy _ (force -> VI1) u _0) = unify' lhs (u @@ VReflStrict VI VI1) go (VGlueTy a phi u a0) (VGlueTy a' phi' u' a0') = traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u'), (a0, a0')] @@ -320,11 +310,16 @@ unify' topa topb = join $ go <$> forceIO topa <*> forceIO topb where go (VGlue a phi u a0 t x) (VGlue a' phi' u' a0' t' x') = traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u'), (a0, a0'), (t, t'), (x, x')] + go (VUnglue a phi u a0 x) (VUnglue a' phi' u' a0' x') = + traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u'), (a0, a0'), (x, x')] + go (VSystem sys) rhs = goSystem unify' sys rhs go rhs (VSystem sys) = goSystem (flip unify') sys rhs go (VEqStrict a x y) (VEqStrict a' x' y') = traverse_ (uncurry unify') [(a, a'), (x, x'), (y, y')] go (VReflStrict a x) (VReflStrict a' x') = traverse_ (uncurry unify') [(a, a'), (x, x')] + go _ VReflStrict{} = pure () + go VReflStrict{} _ = pure () go x y | x == y = pure () @@ -339,32 +334,33 @@ unify' topa topb = join $ go <$> forceIO topa <*> forceIO topb where env <- ask for_ (Map.toList sys) $ \(f, i) -> do let i_q = quote i - for (truthAssignments f (getEnv env)) $ \e -> + for (truthAssignments f (getEnv env)) $ \e -> do k (eval' env{getEnv = e} i_q) (eval' env{getEnv = e} rhs_q) fail = throwElab $ NotEqual topa topb - unify'Spine (PApp a v) (PApp a' v') - | a == a' = unify' v v' + unify'Formula x y + | compareDNFs x y = pure () + | otherwise = fail - unify'Spine PProj1 PProj1 = pure () - unify'Spine PProj2 PProj2 = pure () +unify'Spine :: Projection -> Projection -> ElabM () +unify'Spine (PApp a v) (PApp a' v') + | a == a' = unify' v v' - unify'Spine (PIElim _ _ _ i) (PIElim _ _ _ j) = unify' i j - unify'Spine (POuc a phi u) (POuc a' phi' u') = - traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u')] +unify'Spine PProj1 PProj1 = pure () +unify'Spine PProj2 PProj2 = pure () - unify'Spine (PK a x p pr) (PK a' x' p' pr') = - traverse_ (uncurry unify') [(a, a'), (x, x'), (p, p'), (pr, pr')] +unify'Spine (PIElim _ _ _ i) (PIElim _ _ _ j) = unify' i j +unify'Spine (POuc a phi u) (POuc a' phi' u') = + traverse_ (uncurry unify') [(a, a'), (phi, phi'), (u, u')] - unify'Spine (PJ a x p pr y) (PJ a' x' p' pr' y') = - traverse_ (uncurry unify') [(a, a'), (x, x'), (p, p'), (pr, pr'), (y, y')] +unify'Spine (PK a x p pr) (PK a' x' p' pr') = + traverse_ (uncurry unify') [(a, a'), (x, x'), (p, p'), (pr, pr')] - unify'Spine _ _ = fail +unify'Spine (PJ a x p pr y) (PJ a' x' p' pr' y') = + traverse_ (uncurry unify') [(a, a'), (x, x'), (p, p'), (pr, pr'), (y, y')] - unify'Formula x y - | compareDNFs x y = pure () - | otherwise = fail +unify'Spine _ _ = throwElab (NotEqual undefined undefined) unify :: HasCallStack => Value -> Value -> ElabM () unify a b = unify' a b `catchElab` \(_ :: SomeException) -> liftIO $ throwIO (NotEqual a b) @@ -385,6 +381,12 @@ isConvertibleTo a b = isConvertibleTo (force a) (force b) where wp' <- k (VVar n) `isConvertibleTo` k' (wp_n @@ VVar n) pure (\f -> Lam p n (wp' (App p f (wp (Ref n))))) + VPath a x y `isConvertibleTo` VPi Ex d (Closure _ k') = do + unify d VI + nm <- newName + wp <- isConvertibleTo (a @@ VVar nm) (k' (VVar nm)) + pure (\f -> Lam Ex nm (wp (IElim (quote a) (quote x) (quote y) f (Ref nm)))) + isConvertibleTo a b = do unify' a b pure id @@ -490,9 +492,6 @@ checkScope s (VINot x) = checkScope s x checkScope s (VPath line a b) = traverse_ (checkScope s) [line, a, b] checkScope s (VLine _ _ _ line) = checkScope s line -checkScope s (VIsOne x) = checkScope s x -checkScope _ VItIsOne = pure () - checkScope s (VPartial x y) = traverse_ (checkScope s) [x, y] checkScope s (VPartialP x y) = traverse_ (checkScope s) [x, y] checkScope s (VSystem fs) = @@ -563,9 +562,6 @@ substituteIO sub = substituteIO . force where substituteIO (VIOr x y) = ior <$> substituteIO x <*> substituteIO y substituteIO (VINot x) = inot <$> substituteIO x - substituteIO (VIsOne x) = VIsOne <$> substituteIO x - substituteIO VItIsOne = pure VItIsOne - substituteIO (VPartial x y) = VPartial <$> substituteIO x <*> substituteIO y substituteIO (VPartialP x y) = VPartialP <$> substituteIO x <*> substituteIO y substituteIO (VSystem fs) = do diff --git a/src/Elab/WiredIn.hs b/src/Elab/WiredIn.hs index deaf6ac..93da268 100644 --- a/src/Elab/WiredIn.hs +++ b/src/Elab/WiredIn.hs @@ -39,9 +39,6 @@ wiType WiIOr = VI ~> VI ~> VI wiType WiINot = VI ~> VI wiType WiPathP = dprod (VI ~> VType) \a -> a @@ VI0 ~> a @@ VI1 ~> VType -wiType WiIsOne = VI ~> VTypeω -wiType WiItIsOne = VIsOne VI1 - wiType WiPartial = VI ~> VType ~> VTypeω wiType WiPartialP = dprod VI \x -> VPartial x VType ~> VTypeω @@ -49,7 +46,8 @@ wiType WiSub = dprod VType \a -> dprod VI \phi -> VPartial phi a ~> VTypeω wiType WiInS = forAll VType \a -> forAll VI \phi -> dprod a \u -> VSub a phi (fun (const u)) wiType WiOutS = forAll VType \a -> forAll VI \phi -> forAll (VPartial phi a) \u -> VSub a phi u ~> a -wiType WiComp = dprod' "A" (VI ~> VType) \a -> forAll VI \phi -> dprod (dprod VI \i -> VPartial phi (a @@ i)) \u -> VSub (a @@ VI0) phi (u @@ VI0) ~> a @@ VI1 +wiType WiComp = dprod' "A" (VI ~> VType) \a -> forAll VI \phi -> dprod (dprod VI \i -> VPartial phi (a @@ i)) \u -> VSub (a @@ VI0) phi (u @@ VI0) ~> VSub (a @@ VI1) phi (u @@ VI1) + -- (A : Type) {phi : I} (T : Partial phi Type) (e : PartialP phi (\o -> Equiv (T o) A)) -> Type wiType WiGlue = dprod' "A" VType \a -> forAll' "phi" VI \phi -> dprod' "T" (VPartial phi VType) \t -> VPartialP phi (fun \o -> equiv (t @@ o) a) ~> VType -- {A : Type} {phi : I} {T : Partial phi Type} {e : PartialP phi (\o -> Equiv (T o) A)} -> (t : PartialP phi T) -> Sub A phi (\o -> e o (t o)) -> Glue A phi T e @@ -63,6 +61,8 @@ wiType WiSRefl = forAll' "A" VTypeω \a -> forAll' "x" a \x -> VEqStrict a x x wiType WiSK = forAll' "A" VTypeω \a -> forAll' "x" a \x -> dprod' "P" (VEqStrict a x x ~> VTypeω) \bigp -> (bigp @@ VReflStrict a x) ~> dprod' "p" (VEqStrict a x x) \p -> bigp @@ p wiType WiSJ = forAll' "A" VTypeω \a -> forAll' "x" a \x -> dprod' "P" (dprod' "y" a \y -> VEqStrict a x y ~> VTypeω) \bigp -> bigp @@ x @@ VReflStrict a x ~> forAll' "y" a \y -> dprod' "p" (VEqStrict a x y) \p -> bigp @@ y @@ p +wiType WiLineToEquiv = dprod' "P" (VI ~> VType) \a -> equiv (a @@ VI0) (a @@ VI1) + wiValue :: WiredIn -> Value wiValue WiType = VType wiValue WiPretype = VTypeω @@ -76,15 +76,12 @@ wiValue WiIOr = fun \x -> fun \y -> ior x y wiValue WiINot = fun inot wiValue WiPathP = fun \a -> fun \x -> fun \y -> VPath a x y -wiValue WiIsOne = fun VIsOne -wiValue WiItIsOne = VItIsOne - wiValue WiPartial = fun \phi -> fun \r -> VPartial phi r wiValue WiPartialP = fun \phi -> fun \r -> VPartialP phi r wiValue WiSub = fun \a -> fun \phi -> fun \u -> VSub a phi u wiValue WiInS = forallI \a -> forallI \phi -> fun \u -> VInc a phi u wiValue WiOutS = forallI \a -> forallI \phi -> forallI \u -> fun \x -> outS a phi u x -wiValue WiComp = fun \a -> forallI \phi -> fun \u -> fun \x -> comp a phi u x +wiValue WiComp = fun \a -> forallI \phi -> fun \u -> fun \x -> VInc (a @@ VI1) phi (comp a phi u x) wiValue WiGlue = fun \a -> forallI \phi -> fun \t -> fun \e -> glueType a phi t e wiValue WiGlueElem = forallI \a -> forallI \phi -> forallI \ty -> forallI \eqv -> fun \x -> fun \y -> glueElem a phi ty eqv x y @@ -95,6 +92,12 @@ wiValue WiSRefl = forallI \a -> forallI \x -> VReflStrict a x wiValue WiSK = forallI \a -> forallI \x -> fun \bigp -> fun \pr -> fun \p -> strictK a x bigp pr p wiValue WiSJ = forallI \a -> forallI \x -> fun \bigp -> fun \pr -> forallI \y -> fun \p -> strictJ a x bigp pr y p +wiValue WiLineToEquiv = fun \l -> + GluedVl + (HCon VType (Defined "lineToEquiv" (-1))) + (Seq.fromList [(PApp P.Ex l)]) + (makeEquiv' ((l @@) . inot)) + (~>) :: Value -> Value -> Value a ~> b = VPi P.Ex a (Closure (Bound "_" 0) (const b)) infixr 7 ~> @@ -140,9 +143,6 @@ wiredInNames = Map.fromList , ("inot", WiINot) , ("PathP", WiPathP) - , ("IsOne", WiIsOne) - , ("itIs1", WiItIsOne) - , ("Partial", WiPartial) , ("PartialP", WiPartialP) , ("Sub", WiSub) @@ -158,6 +158,8 @@ wiredInNames = Map.fromList , ("refl_s", WiSRefl) , ("K_s", WiSK) , ("J_s", WiSJ) + + , ("lineToEquiv", WiLineToEquiv) ] newtype NoSuchPrimitive = NoSuchPrimitive { getUnknownPrim :: Text } @@ -220,7 +222,7 @@ ielim line left right fn i = _ -> error $ "can't ielim " ++ show (prettyTm (quote fn)) outS :: HasCallStack => NFSort -> NFEndp -> Value -> Value -> Value -outS _ (force -> VI1) u _ = u @@ VItIsOne +outS _ (force -> VI1) u _ = u @@ VReflStrict VI VI1 outS _ _phi _ (VInc _ _ x) = x outS _ VI0 _ x = x @@ -232,8 +234,8 @@ outS _ _ _ v = error $ "can't outS " ++ show (prettyTm (quote v)) -- Composition comp :: HasCallStack => NFLine -> NFEndp -> Value -> Value -> Value -comp _a VI1 u _a0 = u @@ VI1 @@ VItIsOne -comp a psi@phi u incA0@(compOutS (a @@ VI1) phi (u @@ VI1 @@ VItIsOne) -> a0) = +comp _a VI1 u _a0 = u @@ VI1 @@ VReflStrict VI VI1 +comp a psi@phi u incA0@(compOutS (a @@ VI0) phi (u @@ VI0) -> a0) = case force (a @@ VVar name) of VPi{} -> let @@ -281,7 +283,7 @@ comp a psi@phi u incA0@(compOutS (a @@ VI1) phi (u @@ VI1 @@ VItIsOne) -> a0) = let base i = let VGlueTy b _ _ _ = forceAndGlue (fam @@ i) in b phi i = substitute (Map.singleton name i) thePhi - types i = substitute (Map.singleton name i) theTypes @@ VItIsOne + types i = substitute (Map.singleton name i) theTypes @@ VReflStrict VI VI1 equivs i = substitute (Map.singleton name i) theEquivs a i u = unglue (base i) (phi i) (types i @@ u) (equivs i) (b @@ i @@ u) @@ -294,7 +296,7 @@ comp a psi@phi u incA0@(compOutS (a @@ VI1) phi (u @@ VI1 @@ VItIsOne) -> a0) = (omega_st, omega_t, omega_rep) = pres types base equivs psi (b @@) b0 omega = outS omega_t psi omega_rep omega_st - (t1alpha_st, t1a_t, t1a_rep) = opEquiv (base VI1) (types VI1) (equivs VI1 @@ VItIsOne) (del `ior` psi) (fun ts) (fun ps) a1' + (t1alpha_st, t1a_t, t1a_rep) = opEquiv (base VI1) (types VI1) (equivs VI1 @@ VReflStrict VI VI1) (del `ior` psi) (fun ts) (fun ps) a1' t1alpha = outS t1a_t (del `ior` psi) t1a_rep t1alpha_st (t1, alpha) = (vProj1 t1alpha, vProj2 t1alpha) @@ -305,14 +307,14 @@ comp a psi@phi u incA0@(compOutS (a @@ VI1) phi (u @@ VI1 @@ VItIsOne) -> a0) = a1 = comp (fun (const (base VI1))) (phi VI1 `ior` psi) - (system \j _u -> mkVSystem (Map.fromList [ (phi VI1, ielim (base VI1) a1' (vProj1 (equivs VI1 @@ VItIsOne)) alpha j) - , (psi, a VI1 VItIsOne)])) + (system \j _u -> mkVSystem (Map.fromList [ (phi VI1, ielim (base VI1) a1' (vProj1 (equivs VI1 @@ VReflStrict VI VI1)) alpha j) + , (psi, a VI1 (VReflStrict VI VI1))])) (VInc (base VI1) (phi VI1 `ior` psi) a1') b1 = glueElem (base VI1) (phi VI1) (types VI1) (equivs VI1) (fun (const t1)) a1 in b1 VType -> VGlueTy a0 phi (fun' "is1" \is1 -> u @@ VI1 @@ is1) - (fun' "is1" \_ -> mapVSystem (makeEquiv equivVar) (u @@ VVar equivVar @@ VItIsOne)) + (fun' "is1" \_ -> mapVSystem (makeEquiv equivVar) (u @@ VVar equivVar @@ VReflStrict VI VI1)) VNe (HData False _) Seq.Empty -> a0 VNe (HData False _) args -> @@ -324,7 +326,7 @@ comp a psi@phi u incA0@(compOutS (a @@ VI1) phi (u @@ VI1 @@ VItIsOne) -> a0) = VNe (HData True name) args -> compHIT name (length args) (a @@) phi u incA0 VLam{} -> error $ "comp VLam " ++ show (prettyTm (quote a)) - sys@VSystem{} -> error $ "comp VSystem: " ++ show (prettyTm (quote sys)) + VSystem map -> mkVSystem (fmap (\x -> comp x psi u incA0) map) _ -> VComp a phi u (VInc (a @@ VI0) phi a0) where @@ -347,13 +349,13 @@ forceAndGlue v = compHIT :: HasCallStack => Name -> Int -> (NFEndp -> NFSort) -> NFEndp -> Value -> Value -> Value compHIT name n a phi u a0 = case force phi of - VI1 -> u @@ VI1 @@ VItIsOne + VI1 -> u @@ VI1 @@ VReflStrict VI VI1 VI0 | n == 0 -> compOutS (a VI0) phi u a0 | otherwise -> transHit name a VI0 (compOutS (a VI0) phi u a0) x -> go n a x u a0 where go 0 a phi u a0 = VHComp (a VI0) phi u a0 - go _ a phi u a0 = VHComp (a VI1) phi (system \i n -> transSqueeze name a VI0 (\i -> u @@ i @@ n) i) (transHit name a VI0 (compOutS (a VI1) phi (u @@ VI1 @@ VItIsOne) a0)) + go _ a phi u a0 = VHComp (a VI1) phi (system \i n -> transSqueeze name a VI0 (\i -> u @@ i @@ n) i) (transHit name a VI0 (compOutS (a VI1) phi (u @@ VI1 @@ VReflStrict VI VI1) a0)) compConArgs :: (Name -> Int -> Value -> t1 -> t2 -> Value -> Value) -> Int @@ -413,19 +415,19 @@ fill a phi u a0 j = a0 hComp :: NFSort -> NFEndp -> Value -> Value -> Value -hComp _ (force -> VI1) u _ = u @@ VI1 @@ VItIsOne +hComp _ (force -> VI1) u _ = u @@ VI1 @@ VReflStrict VI VI1 hComp a phi u a0 = VHComp a phi u a0 glueType :: NFSort -> NFEndp -> NFPartial -> NFPartial -> Value glueType a phi tys eqvs = VGlueTy a phi tys eqvs glueElem :: NFSort -> NFEndp -> NFPartial -> NFPartial -> NFPartial -> Value -> Value -glueElem _a (force -> VI1) _tys _eqvs t _vl = t @@ VItIsOne +glueElem _a (force -> VI1) _tys _eqvs t _vl = t @@ VReflStrict VI VI1 glueElem a phi tys eqvs t vl = VGlue a phi tys eqvs t vl unglue :: HasCallStack => NFSort -> NFEndp -> NFPartial -> NFPartial -> Value -> Value -unglue _a (force -> VI1) _tys eqvs x = vProj1 (eqvs @@ VItIsOne) @@ x -unglue _a _phi _tys _eqvs (force -> VGlue _ _ _ _ _ vl) = vl +unglue _a (force -> VI1) _tys eqvs x = vProj1 (eqvs @@ VReflStrict VI VI1) @@ x +unglue _a _phi _tys _eqvs (force -> VGlue _ _ _ _ t vl) = outS _a _phi (t @@ VReflStrict VI VI1) vl unglue a phi tys eqvs (force -> VSystem fs) = VSystem (fmap (unglue a phi tys eqvs) fs) unglue a phi tys eqvs vl = VUnglue a phi tys eqvs vl -- Definition of equivalences @@ -450,7 +452,7 @@ isContr :: Value -> Value isContr a = exists' "x" a \x -> dprod' "y" a \y -> VPath (line (const a)) x y fiber :: NFSort -> NFSort -> Value -> Value -> Value -fiber a b f y = exists' "x" a \x -> VPath (line (const b)) (f @@ x) y +fiber a b f y = exists' "x" a \x -> VPath (line (const b)) y (f @@ x) isEquiv :: NFSort -> NFSort -> Value -> Value isEquiv a b f = dprod' "y" b \y -> isContr (fiber a b f y) @@ -468,7 +470,7 @@ pres tyT tyA f phi t t0 = (VInc pathT phi (VLine (tyA VI1) c1 c2 (line path)), p a0 = f VI0 @@ t0 v = fill (fun tyT) phi (system \i u -> t i @@ u) t0 - path j = comp (fun tyA) (phi `ior` j) (system \i _ -> f i @@ (v i)) a0 + path j = comp (fun tyA) (phi `ior` j) (system \i _ -> f i @@ (v i)) (VInc (tyA VI0) phi a0) opEquiv :: HasCallStack => Value -> Value -> Value -> NFEndp -> Value -> Value -> Value -> (Value, NFSort, Value) opEquiv aT tT f phi t p a = (VInc ty phi v, ty, fun \u -> VPair (t @@ u) (p @@ u)) where @@ -525,9 +527,12 @@ makeTransFiller thedata typeArgument _ (VNe (HData _ n') args) phi () a0 makeTransFiller _ _ _ _ _ _ a0 = fun (const a0) makeEquiv :: Name -> Value -> Value -makeEquiv var vne = VPair f $ fun \y -> VPair (fib y) (fun \u -> p (vProj1 u) (vProj2 u) y) +makeEquiv var vne = makeEquiv' \x -> substitute (Map.singleton var x) vne + +makeEquiv' :: (NFEndp -> Value) -> Value +makeEquiv' line' = VPair f $ fun \y -> VPair (fib y) (fun \u -> p (vProj1 u) (vProj2 u) y) where - line = fun \i -> substitute (Map.singleton var (inot i)) vne + line = fun \i -> line' (inot i) a = line @@ VI0 b = line @@ VI1 diff --git a/src/Main.hs b/src/Main.hs index 4bb4d14..42f05a6 100644 --- a/src/Main.hs +++ b/src/Main.hs @@ -110,10 +110,15 @@ enterReplIn env = loop env envvar reload :: ElabEnv -> IORef ElabEnv -> InputT IO () - reload ElabEnv{loadedFiles} envref = do - newe <- liftIO $ mkrepl <$> checkFiles (reverse loadedFiles) - liftIO $ writeIORef envref newe - loop newe envref + reload env@ElabEnv{loadedFiles} envref = do + newe <- liftIO $ try $ mkrepl <$> checkFiles (reverse loadedFiles) + case newe of + Left e -> do + liftIO $ displayExceptions' ":r" (e :: SomeException) + loop env envref + Right newe -> do + liftIO $ writeIORef envref newe + loop newe envref checkFiles :: [String] -> IO ElabEnv checkFiles files = runElab (go 1 files ask) =<< emptyEnv where diff --git a/src/Syntax.hs b/src/Syntax.hs index 352b20f..04fbcd0 100644 --- a/src/Syntax.hs +++ b/src/Syntax.hs @@ -29,9 +29,6 @@ data WiredIn | WiINot | WiPathP - | WiIsOne -- Proposition associated with an element of the interval - | WiItIsOne -- 1 = 1 - | WiPartial -- (φ : I) -> Type -> Typeω | WiPartialP -- (φ : I) -> Partial r Type -> Typeω @@ -41,12 +38,14 @@ data WiredIn | WiComp -- {A : I -> Type} {phi : I} -- -> ((i : I) -> Partial phi (A i) - -- -> (A i0)[phi -> u i0] -> (A i1)[phi -> u i1] + -- -> (A i0)[phi -> u i0] -> A i1 | WiGlue -- (A : Type) {phi : I} (T : Partial phi Type) (e : PartialP phi (\o -> Equiv (T o) A)) -> Type | WiGlueElem -- {A : Type} {phi : I} {T : Partial phi Type} {e : PartialP phi (\o -> Equiv (T o) A)} -> (t : PartialP phi T) -> Sub A phi (\o -> e o (t o)) -> Glue A phi T e | WiUnglue -- {A : Type} {phi : I} {T : Partial phi Type} {e : PartialP phi (\o -> Equiv (T o) A)} -> Glue A phi T e -> A + | WiLineToEquiv -- {A : I -> Type} -> Equiv (P i0) (P i1) + -- Two-level | WiSEq -- Eq_s : {A : Pretype} (x y : A) -> Pretype | WiSRefl -- refl_s : {A : Pretype} {x : A} -> EqS {A} x x @@ -86,9 +85,6 @@ data Term -- ^ PathIntro : (A : I -> Type) (f : (i : I) -> A i) -> PathP A (f i0) (f i1) -- ~~~~~~~~~ not printed at all - | IsOne Term - | ItIsOne - | Partial Term Term | PartialP Term Term @@ -171,9 +167,6 @@ data Value | VPath NFLine Value Value | VLine NFLine Value Value Value - | VIsOne NFEndp - | VItIsOne - | VPartial NFEndp Value | VPartialP NFEndp Value | VSystem (Map Value Value) @@ -258,9 +251,6 @@ quoteWith names (VINot x) = INot (quoteWith names x) quoteWith names (VPath line x y) = PathP (quoteWith names line) (quoteWith names x) (quoteWith names y) quoteWith names (VLine p x y f) = PathIntro (quoteWith names p) (quoteWith names x) (quoteWith names y) (quoteWith names f) -quoteWith names (VIsOne v) = IsOne (quoteWith names v) -quoteWith _ VItIsOne = ItIsOne - quoteWith names (VPartial x y) = Partial (quoteWith names x) (quoteWith names y) quoteWith names (VPartialP x y) = PartialP (quoteWith names x) (quoteWith names y) quoteWith names (VSystem fs) = System (Map.fromList (map (\(x, y) -> (quoteWith names x, quoteWith names y)) (Map.toList fs))) diff --git a/src/Syntax/Pretty.hs b/src/Syntax/Pretty.hs index 203bc60..0b26feb 100644 --- a/src/Syntax/Pretty.hs +++ b/src/Syntax/Pretty.hs @@ -76,7 +76,7 @@ prettyTm = go True 0 where <> keyword (pretty "in") <+> go False 0 body - Meta MV{mvName} -> keyword (pretty mvName) + Meta MV{mvName} -> keyword (pretty '?' <> pretty mvName) Type -> keyword (pretty "Type") Typeω -> keyword (pretty "Pretype") @@ -108,9 +108,6 @@ prettyTm = go True 0 where IElim _a _x _y f i -> instead (App Ex f i) PathIntro _a _x _y f -> instead f - IsOne p -> brackets (go False 0 p) - ItIsOne -> keyword (pretty "1=1") - Partial a p -> apps (con "Partial") [(Ex, a), (Ex, p)] PartialP a p -> apps (con "PartialP") [(Ex, a), (Ex, p)] @@ -122,8 +119,8 @@ prettyTm = go True 0 where braces (line <> indent 2 (vsep (map face (Map.toList fs))) <> line) Sub a phi u -> apps (con "Sub") [(Ex, a), (Ex, phi), (Ex, u)] - Inc _ _hi u -> apps (con "inS") [(Ex, u)] - Ouc _ _hi _ a0 -> apps (con "outS") [(Ex, a0)] + Inc a phi u -> apps (con "inS") [(Ex, a), (Ex, phi), (Ex, u)] + Ouc a phi u a0 -> apps (con "outS") [(Ex, a), (Ex, phi), (Ex, u), (Ex, a0)] GlueTy a phi t e -> apps (con "primGlue") [(Ex, a), (Ex, phi), (Ex, t), (Ex, e)] Glue _a _phi _ty _e t im -> apps (con "glue") [(Ex, t), (Ex, im)]