|
|
- {- let
- sym : (A : Type) (x y : A) -> Path (\x -> A) x y -> Path (\x -> A) y x
- = λ A x y p i -> p (~ i)
- in let
- funext : (A : Type) (B : A -> Type) (f g : (x : A) -> B x) -> ((x : A) -> Path (\i -> B x) (f x) (g x)) -> Path (\i -> (x : A) -> B x) f g
- = λ A B f g h i x -> h x i
- in let
- i0IsI1 : Path (\x -> I) i0 i1
- = λ i -> i
- in let
- singContr : (A : Type) (a b : A) (p : Path (\j -> A) a b) -> Path (\i -> (x : A) * (Path (\j -> A) a x)) (a, \i -> a) (b, p)
- = λ A a b p i -> (p i, λ j -> p (i && j))
- in -} let
- transport : (A : I -> Type) (a : A i0) -> A i1
- = \A a -> comp A i0 (\i -> []) a
- in {- let
- Jay : (A : Type) (x : A)
- (P : (y : A) -> Path (\i -> A) x y -> Type)
- (d : P x (\i -> x))
- (y : A) (p : Path (\i -> A) x y)
- -> P y p
- = \A x P d y p -> transport (\i -> P (p i) (\j -> p (i && j))) d
- in -}
- let
- fill : (i : I) (A : I -> Type)
- (phi : I) (u : (i : I) -> Partial phi (A i))
- -> Sub (A i0) phi (u i0) -> A i
- = \i A phi u a0 ->
- comp (\j -> A (i && j)) (phi || ~i) (\j -> [ phi -> u (i && j), ~i -> a0 ]) a0
- in let
- trans : (A : Type) (a b c : A)
- -> Path (\i -> A) a b
- -> Path (\i -> A) b c
- -> Path (\i -> A) a c
- = \A a b c p q i ->
- comp (\j -> A) (i || ~i)
- (\j -> [ ~i -> a, i -> q j ])
- (p i)
- in let
- elimI : (P : I -> Type)
- (a : P i0)
- (b : P i1)
- -> Path P a b
- -> (i : I) -> P i
- = \P a b p i -> p i
- in let
- contrI : (i : I) -> Path (\i -> I) i0 i
- = \i -> elimI (\x -> Path (\i -> I) i0 x) (\i -> i0) (\i -> i) (\i j -> i && j) i
- in let
- IisContr : (i : I) * ((j : I) -> Path (\i -> I) i j)
- = (i0, contrI)
- in IisContr
|